Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

H2-reduced phosphomolybdate promotes room-temperature aerobic oxidation of methane to methanol

Abstract

The selective partial oxidation of methane to methanol using molecular oxygen (O2) represents a long-standing challenge, inspiring extensive study for many decades. However, considerable challenges still prevent low-temperature methane activation via the aerobic route. Here we report a precipitated Pd-containing phosphomolybdate, which, after activation by molecular hydrogen (H2), converts methane and O2 almost exclusively to methanol at room temperature. The highest activity reaches 67.4 μmol gcat−1 h−1. Pd enables rapid H2 activation and H spillover to phosphomolybdate for Mo reduction, while facile O2 activation and subsequent methane activation occur on the reduced phosphomolybdate sites. Continuous production of methanol from methane was also achieved by concurrently introducing H2, O2 and methane into the system, where H2 assists in maintaining a moderately reduced state of phosphomolybdate. This work reveals the underexplored potential of such a Mo-based catalyst for aerobic methane oxidation and highlights the importance of regulating the chemical valence state to construct methane active sites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure and redox properties of Pd/CsPMA.
Fig. 2: Parameter–activity correlations and recycling tests for methane oxidation.
Fig. 3: Experimental insights into the methane oxidation mechanism over Pd/CsPMA-H.
Fig. 4: Proposed mechanism for methane activation and methanol formation from DFT calculations.

Similar content being viewed by others

Data availability

All data are available from the authors upon reasonable request. Source data are provided with this paper.

References

  1. Sushkevich, V. L., Palagin, D., Ranocchiari, M. & Bokhoven, J. A. V. Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science 356, 523–527 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Shan, J., Li, M., Allard, L. F., Lee, S. & Flytzani-Stephanopoulos, M. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature 551, 605–608 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Schwach, P., Pan, X. & Bao, X. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects. Chem. Rev. 117, 8497–8520 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Wang, V. C. et al. Alkane oxidation: methane monooxygenases, related enzymes, and their biomimetics. Chem. Rev. 117, 8574–8621 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Meng, X. et al. Direct methane conversion under mild condition by thermo-, electro-, or photocatalysis. Chem 5, 2296–2325 (2019).

    Article  CAS  Google Scholar 

  6. Sher Shah, M. S. A. et al. Catalytic oxidation of methane to oxygenated products: recent advancements and prospects for electrocatalytic and photocatalytic conversion at low temperatures. Adv. Sci. 7, 2001946 (2020).

    Article  CAS  Google Scholar 

  7. Resources to Reserves 2013 (IEA, 2013).

  8. Koo, C. W. & Rosenzweig, A. C. Biochemistry of aerobic biological methane oxidation. Chem. Soc. Rev. 50, 3424–3436 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hammond, C. et al. Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5. Angew. Chem. Int. Ed. 51, 5129–5133 (2012).

    Article  CAS  Google Scholar 

  10. Qi, G. et al. Au-ZSM-5 catalyses the selective oxidation of CH4 to CH3OH and CH3COOH using O2. Nat. Catal. 5, 45–54 (2022).

    Article  CAS  Google Scholar 

  11. Baek, J. et al. Bioinspired metal–organic framework catalysts for selective methane oxidation to methanol. J. Am. Chem. Soc. 140, 18208–18216 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Ikuno, T. et al. Methane oxidation to methanol catalyzed by Cu-oxo clusters stabilized in NU-1000 metal–organic framework. J. Am. Chem. Soc. 139, 10294–10301 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Zheng, J. et al. Selective methane oxidation to methanol on Cu-oxo dimers stabilized by zirconia nodes of an NU-1000 metal–organic framework. J. Am. Chem. Soc. 141, 9292–9304 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Osadchii, D. Y. et al. Isolated Fe sites in metal organic frameworks catalyze the direct conversion of methane to methanol. ACS Catal. 8, 5542–5548 (2018).

    Article  CAS  Google Scholar 

  15. Huang, W. et al. Low-temperature transformation of methane to methanol on Pd1O4 single sites anchored on the internal surface of microporous silicate. Angew. Chem. Int. Ed. 55, 13441–13445 (2016).

    Article  CAS  Google Scholar 

  16. Kwon, Y., Kim, T. Y., Kwon, G., Yi, J. & Lee, H. Selective activation of methane on single-atom catalyst of rhodium dispersed on zirconia for direct conversion. J. Am. Chem. Soc. 139, 17694–17699 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Cui, X. et al. Room-temperature methane conversion by graphene-confined single iron atoms. Chem 4, 1902–1910 (2018).

    Article  CAS  Google Scholar 

  18. Shen, Q. et al. Single chromium atoms supported on titanium dioxide nanoparticles for synergic catalytic methane conversion under mild conditions. Angew. Chem. Int. Ed. 59, 1216–1219 (2020).

    Article  CAS  Google Scholar 

  19. Bai, S. et al. High-efficiency direct methane conversion to oxygenates on a cerium dioxide nanowires supported rhodium single-atom catalyst. Nat. Commun. 11, 954 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tang, X. et al. Direct oxidation of methane to oxygenates on supported single Cu atom catalyst. Appl. Catal. B 285, 119827 (2021).

    Article  CAS  Google Scholar 

  21. Ab Rahim, M. H. et al. Oxidation of methane to methanol with hydrogen peroxide using supported gold–palladium alloy nanoparticles. Angew. Chem. Int. Ed. 52, 1280–1284 (2013).

    Article  CAS  Google Scholar 

  22. Agarwal, N. et al. Aqueous Au–Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science 358, 223–227 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Chen, J. et al. Oxidation of methane to methanol over Pd@Pt nanoparticles under mild conditions in water. Catal. Sci. Technol. 11, 3493–3500 (2021).

    Article  CAS  Google Scholar 

  24. He, Y. et al. Low-temperature direct conversion of methane to methanol over carbon materials supported Pd–Au nanoparticles. Catal. Today 339, 48–53 (2020).

    Article  CAS  Google Scholar 

  25. Bai, S., Xu, Y., Wang, P., Shao, Q. & Huang, X. Activating and converting CH4 to CH3OH via the CuPdO2/CuO nanointerface. ACS Catal. 9, 6938–6944 (2019).

    Article  CAS  Google Scholar 

  26. Wu, B. et al. Cu single-atoms embedded in porous carbon nitride for selective oxidation of methane to oxygenates. Chem. Commun. 56, 14677–14680 (2020).

    Article  CAS  Google Scholar 

  27. Xie, J. et al. Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide-supported iron species. Nat. Catal. 1, 889–896 (2018).

    Article  CAS  Google Scholar 

  28. McVicker, R. et al. Low temperature selective oxidation of methane using gold–palladium colloids. Catal. Today 342, 32–38 (2020).

    Article  CAS  Google Scholar 

  29. Jin, Z. et al. Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol. Science 367, 193–197 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Kang, J. & Park, E. D. Selective oxidation of methane over Fe-zeolites by in situ generated H2O2. Catalysts 10, 299 (2020).

    Article  CAS  Google Scholar 

  31. Kang, J., Puthiaraj, P., Ahn, W.-s. & Park, E. D. Direct synthesis of oxygenates via partial oxidation of methane in the presence of O2 and H2 over a combination of Fe-ZSM-5 and Pd supported on an acid-functionalized porous polymer. Appl. Catal. A 602, 117711 (2020).

    Article  CAS  Google Scholar 

  32. Luo, L. et al. Synergy of Pd atoms and oxygen vacancies on In2O3 for methane conversion under visible light. Nat. Commun. 13, 2930 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. An, B. et al. Direct photo-oxidation of methane to methanol over a mono-iron hydroxyl site. Nat. Mater. 21, 932–938 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Fan, Y. et al. Selective photocatalytic oxidation of methane by quantum-sized bismuth vanadate. Nat. Sustain. 4, 509–515 (2021).

    Article  Google Scholar 

  35. Srivastava, R. K., Sarangi, P. K., Bhatia, L., Singh, A. K. & Shadangi, K. P. Conversion of methane to methanol: technologies and future challenges. Biomass. Convers. Biorefin. 12, 1851–1875 (2021).

    Article  Google Scholar 

  36. Lopez, X., Carbo, J. J., Bo, C. & Poblet, J. M. Structure, properties and reactivity of polyoxometalates: a theoretical perspective. Chem. Soc. Rev. 41, 7537–7571 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Wang, S.-S. & Yang, G.-Y. Recent advances in polyoxometalate-catalyzed reactions. Chem. Rev. 115, 4893–4962 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, B. et al. Stabilizing a platinum1 single-atom catalyst on supported phosphomolybdic acid without compromising hydrogenation activity. Angew. Chem. Int. Ed. 55, 8319–8323 (2016).

    Article  CAS  Google Scholar 

  39. Zhang, B. et al. Atomically dispersed Pt1-polyoxometalate catalysts: how does metal–support interaction affect stability and hydrogenation activity? J. Am. Chem. Soc. 141, 8185–8197 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Hülsey, M. J., Fung, V., Hou, X., Wu, J. & Yan, N. Hydrogen spillover and its relation to hydrogenation: observations on structurally defined single-atom sites. Angew. Chem. Int. Ed. 61, e202208237 (2022).

    Article  Google Scholar 

  41. Hülsey, M. J. et al. Identifying key descriptors for the single-atom catalyzed CO oxidation. CCS Chem. 4, 3296–3308 (2022).

  42. Geng, Y. & Li, H. Hydrogen spillover-enhanced heterogeneously catalyzed hydrodeoxygenation for biomass upgrading. ChemSusChem 15, e202102495 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Xiong, M., Gao, Z. & Qin, Y. Spillover in heterogeneous catalysis: new insights and opportunities. ACS Catal. 11, 3159–3172 (2021).

    Article  CAS  Google Scholar 

  44. Xi, Q. et al. In-situ fabrication of MoO3 nanobelts decorated with MoO2 nanoparticles and their enhanced photocatalytic performance. Appl. Surf. Sci. 480, 427–437 (2019).

    Article  CAS  Google Scholar 

  45. Dieterle, M., Weinberg, G. & Mestl, G. Raman spectroscopy of molybdenum oxides. Phys. Chem. Chem. Phys. 4, 812–821 (2002).

    Article  CAS  Google Scholar 

  46. Ravi, M. et al. Misconceptions and challenges in methane-to-methanol over transition-metal-exchanged zeolites. Nat. Catal. 2, 485–494 (2019).

    Article  CAS  Google Scholar 

  47. Richards, T. et al. A residue-free approach to water disinfection using catalytic in situ generation of reactive oxygen species. Nat. Catal. 4, 575–585 (2021).

    Article  CAS  Google Scholar 

  48. Fontmorin, J. M., Burgos Castillo, R. C., Tang, W. Z. & Sillanpaa, M. Stability of 5,5-dimethyl-1-pyrroline-N-oxide as a spin-trap for quantification of hydroxyl radicals in processes based on Fenton reaction. Water Res. 99, 24–32 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Conte, M. et al. Insights into the reaction mechanism of cyclohexane oxidation catalysed by molybdenum blue nanorings. Catal. Lett. 146, 126–135 (2016).

  50. Liu, X. et al. Molybdenum blue nano-rings: an effective catalyst for the partial oxidation of cyclohexane. Catal. Sci. Technol. 5, 217–227 (2015).

  51. Cozar, O., Magdas, D. A. & Ardelean, I. EPR study of molybdenum-lead-phosphate glasses. J. Non-Cryst. Solids 354, 1032–1035 (2008).

  52. Almidani, A. H. et al. The reaction of HV(CO)4dppe with MoO3: a well-defined model of hydrogen spillover. Catal. Sci. Technol. 11, 7540–7544 (2021).

    Article  CAS  Google Scholar 

  53. Timmiati, S. N., Jalil, A. A., Triwahyono, S., Setiabudi, H. D. & Annuar, N. H. R. Formation of acidic Brönsted (MoOx)(Hy)+ evidenced by XRD and 2,6-lutidine FTIR spectroscopy for cumene cracking. Appl. Catal. A 459, 8–16 (2013).

    Article  CAS  Google Scholar 

  54. Triwahyono, S., Jalil, A. A., Ruslan, N. N., Setiabudi, H. D. & Kamarudin, N. H. N. C5–C7 linear alkane hydroisomerization over MoO3–ZrO2 and Pt/MoO3–ZrO2 catalysts. J. Catal. 303, 50–59 (2013).

    Article  CAS  Google Scholar 

  55. Spencer, J., Folli, A., Richards, E. & Murphy, D. M. in Electron Paramagnetic Resonance, Vol. 26 (eds Chechik, V. & Murphy, D. M.) 130–170 (Royal Society of Chemistry, 2018).

  56. Selvaraj, U. & Rao, K. J. ESR and optical studies of Mo5+ and W5+ ions in phosphomolybdate and phosphotungstate glasses. Chem. Phys. 123, 141–150 (1988).

    Article  CAS  Google Scholar 

  57. Kivelson, D. & Lee, S. K. ESR studies and the electronic structure of vanadyl ion complexes. J. Chem. Phys. 41, 1896–1903 (2004).

    Article  Google Scholar 

  58. Abragam, A., Pryce, M. H. L. & Simon, F. E. Theory of the nuclear hyperfine structure of paramagnetic resonance spectra in crystals. Proc. R. Soc. Lond. A Math. Phys. Sci. 205, 135–153 (1951).

    CAS  Google Scholar 

  59. Abragam, A., Pryce, M. H. L. & Bleaney, B. The theory of the nuclear hyperfine structure of paramagnetic resonance spectra in the copper Tutton salts. Proc. R. Soc. Lond. A Math. Phys. Sci. 206, 164–172 (1951).

    CAS  Google Scholar 

  60. Łabanowska, M. EPR monitoring of redox processes in transition metal oxide catalysts. ChemPhysChem 2, 712–731 (2001).

    Article  PubMed  Google Scholar 

  61. Łabanowska, M. Paramagnetic defects in MoO3—revisited. Phys. Chem. Chem. Phys. 1, 5385–5392 (1999).

    Article  Google Scholar 

  62. Stoll, S. & Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 178, 42–55 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Kresse, G., & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  64. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  65. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  67. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A. Climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (92061109) for supporting the project. N.Y. and Q.H. sincerely acknowledge the support of the National Research Foundation (NRF) Singapore, under its NRF Investigatorship (NRF-NRFI07–2021–0006) and NRF Fellowship (NRF-NRFF11-2019-0002), respectively. R.J.L. and G.J.H. gratefully acknowledge Cardiff University and the Max Planck Centre for Fundamental Heterogeneous Catalysis (FUNCAT) for financial support. Z.Y. acknowledges support from the National Natural Science Foundation of China (52222102, 22272024 and 51871058) and the Eyas Program of Fujian Province. DFT simulations were conducted at the Center for Nanophase Materials Sciences (CNMS), which is a US Department of Energy, Office of Science User Facility at Oak Ridge National Laboratory.

Author information

Authors and Affiliations

Authors

Contributions

N.Y. conceived and supervised the project. Q.H. and G.J.H. co-supervised the project. S.W. conducted most experiments including synthesis, characterization and testing, as well as data analysis. V.F. carried out DFT calculations and wrote the related section. M.J.H. and J.C. carried out the catalyst synthesis and characterization. X.L. and Z.Y. conducted TEM analysis. A.F. and R.J.L. contributed to data analysis of the EPR spectra and H2O2 detection. S.W., Q.H. and N.Y. wrote the paper. G.J.H., A.F. and R.J.L. revised the paper. All authors discussed the paper.

Corresponding authors

Correspondence to Graham J. Hutchings, Qian He or Ning Yan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Lars Grabow, Gunnar Jeschke and Liang Wang for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–32, Notes 1 and 2, Tables 1–7 and Refs. 1–11.

Source data

Source Data Fig. 4

INCAR and POSCAR files for the structures shown in Fig. 4 for DFT calculations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Fung, V., Hülsey, M.J. et al. H2-reduced phosphomolybdate promotes room-temperature aerobic oxidation of methane to methanol. Nat Catal 6, 895–905 (2023). https://doi.org/10.1038/s41929-023-01011-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-01011-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing