Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct photo-oxidation of methane to methanol over a mono-iron hydroxyl site

An Author Correction to this article was published on 11 July 2022

This article has been updated

Abstract

Natural gas, consisting mainly of methane (CH4), has a relatively low energy density at ambient conditions (~36 kJ l−1). Partial oxidation of CH4 to methanol (CH3OH) lifts the energy density to ~17 MJ l−1 and drives the production of numerous chemicals. In nature, this is achieved by methane monooxygenase with di-iron sites, which is extremely challenging to mimic in artificial systems due to the high dissociation energy of the C–H bond in CH4 (439 kJ mol−1) and facile over-oxidation of CH3OH to CO and CO2. Here we report the direct photo-oxidation of CH4 over mono-iron hydroxyl sites immobilized within a metal–organic framework, PMOF-RuFe(OH). Under ambient and flow conditions in the presence of H2O and O2, CH4 is converted to CH3OH with 100% selectivity and a time yield of 8.81 ± 0.34 mmol gcat−1 h−1 (versus 5.05 mmol gcat−1 h−1 for methane monooxygenase). By using operando spectroscopic and modelling techniques, we find that confined mono-iron hydroxyl sites bind CH4 by forming an [Fe–OH···CH4] intermediate, thus lowering the barrier for C–H bond activation. The confinement of mono-iron hydroxyl sites in a porous matrix demonstrates a strategy for C–H bond activation in CH4 to drive the direct photosynthesis of CH3OH.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design and synthesis of the PMOF-RuFe(OH) catalyst and the flow reactor for photo-oxidation of CH4 to CH3OH.
Fig. 2: Characterization of PMOF-RuFe(OH).
Fig. 3: Photocatalytic performance.
Fig. 4: Investigation of the mono-iron hydroxyl site for C–H activation.

Similar content being viewed by others

Data availability

Additional experimental details of characterization and catalysis, DFT calculations and DFT-calculated structures are available in the Supplementary Information and Supplementary Data.

Change history

References

  1. McFarland, E. Unconventional chemistry for unconventional natural gas. Science 338, 340–342 (2012).

    Article  CAS  Google Scholar 

  2. Kerr, R. A. Energy. Natural gas from shale bursts onto the scene. Science 328, 1624–1626 (2010).

    Article  CAS  Google Scholar 

  3. Ravi, M., Ranocchiari, M. & van Bokhoven, J. A. The direct catalytic oxidation of methane to methanol—a critical assessment. Angew. Chem. Int. Ed. Engl. 56, 16464–16483 (2017).

    Article  CAS  Google Scholar 

  4. Periana, R. A. et al. Platinum catalysts for the high-yield oxidation of methane to a methanol derivative. Science 280, 560–564 (1998).

    Article  CAS  Google Scholar 

  5. Muehlhofer, M., Strassner, T. & Herrmann, W. A. New catalyst systems for the catalytic conversion of methane into methanol. Angew. Chem. Int. Ed. Engl. 41, 1745–1747 (2002).

    Article  CAS  Google Scholar 

  6. Tinberg, C. E. & Lippard, S. J. Oxidation reactions performed by soluble methane monooxygenase hydroxylase intermediates Hperoxo and Q proceed by distinct mechanisms. Biochemistry 49, 7902–7912 (2010).

    Article  CAS  Google Scholar 

  7. Colby, J., Stirling, D. I. & Dalton, H. The soluble methane mono-oxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n-alkanes, n-alkenes, ethers, and alicyclic, aromatic and heterocyclic compounds. Biochem. J. 165, 395–402 (1977).

    Article  CAS  Google Scholar 

  8. Snyder, B. E. R. et al. The active site of low-temperature methane hydroxylation in iron-containing zeolites. Nature 536, 317–321 (2016).

    Article  CAS  Google Scholar 

  9. Grundner, S. et al. Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol. Nat. Commun. 6, 7546 (2015).

    Article  CAS  Google Scholar 

  10. Cui, X. et al. Room-temperature methane conversion by graphene-confined single iron atoms. Chem 4, 1902–1910 (2018).

    Article  CAS  Google Scholar 

  11. Huang, W. et al. Low-temperature transformation of methane to methanol on Pd1O4 single sites anchored on the internal surface of microporous silicate. Angew. Chem. Int. Ed. Engl. 55, 13441–13445 (2016).

    Article  CAS  Google Scholar 

  12. Latimer, A. A., Kakekhani, A., Kulkarni, A. R. & Nørskov, J. K. Direct methane to methanol: the selectivity–conversion limit and design strategies. ACS Catal. 8, 6894–6907 (2018).

    Article  CAS  Google Scholar 

  13. Song, H., Meng, X., Wang, Z. J., Liu, H. & Ye, J. Solar-energy-mediated methane conversion. Joule 3, 1606–1636 (2019).

    Article  CAS  Google Scholar 

  14. Fan, Y. et al. Selective photocatalytic oxidation of methane by quantum-sized bismuth vanadate. Nat. Sustain. 4, 509–515 (2021).

    Article  Google Scholar 

  15. Villa, K., Murcia-Lopez, S., Andreu, T. & Morante, J. R. On the role of WO3 surface hydroxyl groups for the photocatalytic partial oxidation of methane to methanol. Catal. Commun. 58, 200–203 (2015).

    Article  CAS  Google Scholar 

  16. Yu, X. et al. Selective photocatalytic conversion of methane into carbon monoxide over zinc-heteropolyacid-titania nanocomposites. Nat. Commun. 10, 700 (2019).

    Article  CAS  Google Scholar 

  17. Xie, J. et al. Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide-supported iron species. Nat. Catal. 1, 889–896 (2018).

    Article  CAS  Google Scholar 

  18. Song, H. et al. Direct and selective photocatalytic oxidation of CH4 to oxygenates with O2 on cocatalysts/ZnO at room temperature in water. J. Am. Chem. Soc. 141, 20507–20515 (2019).

    Article  CAS  Google Scholar 

  19. Zheng, J. et al. Selective methane oxidation to methanol on Cu-oxo dimers stabilized by zirconia nodes of an NU-1000 metal–organic framework. J. Am. Chem. Soc. 141, 9292–9304 (2019).

    Article  CAS  Google Scholar 

  20. Baek, J. et al. Bioinspired metal–organic framework catalysts for selective methane oxidation to methanol. J. Am. Chem. Soc. 140, 18208–18216 (2018).

    Article  CAS  Google Scholar 

  21. Zhao, W. et al. Fe-O clusters anchored on nodes of metal–organic frameworks for direct methane oxidation. Angew. Chem. Int. Ed. Engl. 60, 5811–5815 (2021).

    Article  CAS  Google Scholar 

  22. McIntyre, N. S. & Zetaruk, D. G. X-ray photoelectron spectroscopic studies of iron oxides. Anal. Chem. 49, 1521–1529 (1977).

    Article  CAS  Google Scholar 

  23. Shi, W. et al. Surface modification of two-dimensional metal–organic layers creates biomimetic catalytic microenvironments for selective oxidation. Angew. Chem. Int. Ed. Engl. 56, 9704–9709 (2017).

    Article  CAS  Google Scholar 

  24. Hagen, W. R. EPR spectroscopy as a probe of metal centres in biological systems. Dalton Trans. 7, 4415–4434 (2006).

    Article  CAS  Google Scholar 

  25. Chen, W. T., Hsu, C. W., Lee, J. F., Pao, C. W. & Hsu, I. J. Theoretical analysis of Fe K-edge XANES on iron pentacarbonyl. ACS Omega 5, 4991–5000 (2020).

    Article  CAS  Google Scholar 

  26. Li, Y., Li, J., Zhang, G., Wang, K. & Wu, X. Selective photocatalytic oxidation of low concentration methane over graphitic carbon nitride-decorated tungsten bronze cesium. ACS Sustain. Chem. Eng. 7, 4382–4389 (2019).

    Article  CAS  Google Scholar 

  27. Lopez, H. H. & Martinez, A. Selective photo-assisted oxidation of methane into formaldehyde on mesoporous VOx/SBA-15 catalysts. Catal. Lett. 83, 37–41 (2002).

    Article  CAS  Google Scholar 

  28. Chen, X. & Li, S. Photooxidation of methane to methanol by molecular oxygen on water-preadsorbed porous TiO2-based catalysts. Chem. Lett. 29, 314–315 (2000).

    Article  Google Scholar 

  29. Murcia-Lopez, S., Villa, K., Andreu, T. & Morante, J. R. Partial oxidation of methane to methanol using bismuth-based photocatalysts. ACS Catal. 4, 3013–3019 (2014).

    Article  CAS  Google Scholar 

  30. Zhu, W. L. et al. Facet-dependent enhancement in the activity of bismuth vanadate microcrystals for the photocatalytic conversion of methane to methanol. ACS Appl. Nano Mater. 1, 6683–6691 (2018).

    Article  CAS  Google Scholar 

  31. Murcia-Lopez, S. et al. Controlled photocatalytic oxidation of methane to methanol through surface modification of beta zeolites. ACS Catal. 7, 2878–2885 (2017).

    Article  CAS  Google Scholar 

  32. Zhou, Y. et al. Direct functionalization of methane into ethanol over copper modified polymeric carbon nitride via photocatalysis. Nat. Commun. 10, 506 (2019).

    Article  CAS  Google Scholar 

  33. Villa, K., Murcia-Lopez, S., Morante, J. R. & Andreu, T. An insight on the role of La in mesoporous WO3 for the photocatalytic conversion of methane into methanol. Appl. Catal. B 187, 30–36 (2016).

    Article  CAS  Google Scholar 

  34. Yang, J., Hao, J., Wei, J., Dai, J. & Li, Y. Visible-light-driven selective oxidation of methane to methanol on amorphous FeOOH coupled m-WO3. Fuel 266, 117104 (2020).

    Article  CAS  Google Scholar 

  35. Luo, L. et al. Water enables mild oxidation of methane to methanol on gold single-atom catalysts. Nat. Commun. 12, 1218 (2021).

    Article  CAS  Google Scholar 

  36. Shi, S., Sun, Z., Bao, C., Gao, T. & Hu, Y. H. The special route toward conversion of methane to methanol on a fluffy metal-free carbon nitride photocatalyst in the presence of H2O2. Int. J. Energy Res. 44, 2740–2753 (2020).

    Article  CAS  Google Scholar 

  37. Hu, Y., Nagai, Y., Rahmawaty, D., Wei, C. & Anpo, M. Characteristics of the photocatalytic oxidation of methane into methanol on V-containing MCM-41 catalysts. Catal. Lett. 124, 80–84 (2008).

    Article  CAS  Google Scholar 

  38. Sun, L. et al. Water-involved methane-selective catalytic oxidation by dioxygen over copper zeolites. Chem 7, 1557–1568 (2021).

    Article  CAS  Google Scholar 

  39. Jin, Z. et al. Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol. Science 367, 193–197 (2020).

    Article  CAS  Google Scholar 

  40. Cai, X., Fang, S. & Hu, Y. H. Unprecedentedly high efficiency for photocatalytic conversion of methane to methanol over Au–Pd/TiO2—what is the role of each component in the system? J. Mater. Chem. A 9, 10796–10802 (2021).

    Article  CAS  Google Scholar 

  41. Weng, B., Qi, M. Y., Han, C., Tang, Z. R. & Xu, Y. J. Photocorrosion inhibition of semiconductor-based photocatalysts: basic principle, current development, and future perspective. ACS Catal. 9, 4642–4687 (2019).

    Article  CAS  Google Scholar 

  42. Wasiutynski, T. & Luty, T. Lattice dynamics calculation for low temperature phase of solid methane (Institute of Nuclear Physics, 1972).

  43. Joseph, J. & Jemmis, E. D. Red-, blue-, or no-shift in hydrogen bonds: a unified explanation. J. Am. Chem. Soc. 129, 4620–4632 (2007).

    Article  CAS  Google Scholar 

  44. Osadchii, D. Y. et al. Isolated Fe sites in metal organic frameworks catalyze the direct conversion of methane to methanol. ACS Catal. 8, 5542–5548 (2018).

    Article  CAS  Google Scholar 

  45. Szecsenyi, A., Li, G., Gascon, J. & Pidko, E. A. Unraveling reaction networks behind the catalytic oxidation of methane with H2O2 over a mixed-metal MIL-53(Al,Fe) MOF catalyst. Chem. Sci. 9, 6765–6773 (2018).

    Article  CAS  Google Scholar 

  46. Wang, C. & Lin, W. Diffusion-controlled luminescence quenching in metal–organic frameworks. J. Am. Chem. Soc. 133, 4232–4235 (2011).

    Article  CAS  Google Scholar 

  47. Guo, W., Luo, Z., Lv, H. & Hill, C. L. Aerobic oxidation of formaldehyde catalyzed by polyvanadotungstates. ACS Catal. 4, 1154–1161 (2014).

    Article  CAS  Google Scholar 

  48. Han, X. et al. Reversible adsorption of nitrogen dioxide within a robust porous metal–organic framework. Nat. Mater. 17, 691–696 (2018).

    Article  CAS  Google Scholar 

  49. Stoll, S. & Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 178, 42–55 (2006).

    Article  CAS  Google Scholar 

  50. Buettner, G. R. Spin trapping: ESR parameters of spin adducts 1474 1528V. Free Radic. Biol. Med. 3, 259–303 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank EPSRC (EP/I011870, EPSRC EP/V056409), the Royal Society and University of Manchester for funding. We thank EPSRC for funding and the EPSRC National Service for EPR Spectroscopy at Manchester. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 742401, NANOCHEM). We thank I. da Silva, B. Wang, W. Lu, Y. Ma, J. Zhang, L. Zeng, R. Wei and H. Wilson for help. We thank Diamond Light Source for access to the beamline B22. We acknowledge Advanced Photon Source (APS) at Argonne National Laboratory and Aichi Synchrotron Radiation Centre (AichiSR) for the provision of beamtime at 10-BM and BL11S. A portion of this research used resources at the Spallation Neutron Source, a DOE Office of Science User Facility operated by Oak Ridge National Laboratory (ORNL). The computing resources at ORNL were made available through the VirtuES and the ICE-MAN projects, funded by Laboratory Directed Research and Development program and Computer and Data Environment for Science (CADES).

Author information

Authors and Affiliations

Authors

Contributions

B.A., C.W., S.Y. and M.S. conceived the idea and designed the project. S.Y. and M.S. directed and supervised the research. B.A., Z.L., X.Z., Y.C. and Z.Z. performed the synthesis, catalysis and mechanism study. Z.W., A.M.S., Z.L., F.T. and E.J.L.M. contributed to the EPR experiments. Z.L. and Y.C. performed the computational work. X.H., M.D.F., L.S.N., A.J.R.-C., C.W. and W.L. contributed to the data analysis. B.A., Z.L., S.Y. and M.S. wrote the paper, with input from all authors.

Corresponding authors

Correspondence to Sihai Yang or Martin Schröder.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Text, Figs. 1–56, Tables 1–18, refs. 1–109 and Notes.

Supplementary Data

Cartesian atomic coordinates.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, B., Li, Z., Wang, Z. et al. Direct photo-oxidation of methane to methanol over a mono-iron hydroxyl site. Nat. Mater. 21, 932–938 (2022). https://doi.org/10.1038/s41563-022-01279-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01279-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing