Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bypassing evolutionary dead ends and switching the rate-limiting step of a human immunotherapeutic enzyme

Abstract

The Trp metabolite l-kynurenine (KYN) accumulates in numerous solid tumours and mediates potent immunosuppression. Bacterial kynureninases (KYNases), which preferentially degrade KYN, can relieve immunosuppression in multiple cancer models, but immunogenicity concerns preclude their clinical use, while the human enzyme (HsKYNase) has very low activity for KYN and shows no therapeutic effect. Using fitness selections, we evolved a HsKYNase variant with 28-fold higher activity, beyond which exploration of >30 evolutionary trajectories involving the interrogation of >109 variants led to no further improvements. The introduction of two amino acid substitutions conserved in bacterial KYNases reduced enzyme fitness but potentiated rapid evolution of variants with ~500-fold improved activity and reversed substrate specificity, resulting in an enzyme capable of mediating strong anti-tumour effects in mice. Pre-steady-state kinetics revealed a switch in the rate-determining step attributable to changes in both enzyme structure and conformational dynamics. Apart from its clinical significance, our work highlights how rationally designed substitutions can potentiate trajectories that overcome barriers in protein evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Directed evolution of HsKYNase and development of a KYN specialist variant.
Fig. 2: Pre-steady-state kinetics analysis.
Fig. 3: Crystal structure of HsKYNase_66 and its comparison to HsKYNase.
Fig. 4: HDX-MS of HsKYNase_66 and HsKYNase in the reaction with KYN.
Fig. 5: Anti-tumour activity of an engineered human KYNase enzyme.

Similar content being viewed by others

Data availability

The datasets generated and/or analysed during the current study are attached in the Supplementary Information and additional data are available from the corresponding authors upon reasonable request. The HsKYNase_66 structure has been deposited in the PDB with the accession code 7S3V. Source data are provided with this paper.

References

  1. Opitz, C. A. et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478, 197–203 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Cervenka, I., Agudelo, L. Z. & Ruas, J. L. Kynurenines: tryptophan’s metabolites in exercise, inflammation, and mental health. Science 357, eaaf9794 (2017).

    Article  PubMed  Google Scholar 

  3. Nguyen, D. J. M. et al. Targeting the kynurenine pathway for the treatment of cisplatin-resistant lung cancer. Mol. Cancer Res. 18, 105–117 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Frumento, G. et al. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J. Exp. Med. 196, 459–468 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Puccetti, P. et al. Accumulation of an endogenous tryptophan-derived metabolite in colorectal and breast cancers. PLoS ONE 10, e0122046 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Holmgaard, R. B., Zamarin, D., Munn, D. H., Wolchok, J. D. & Allison, J. P. Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. J. Exp. Med. 210, 1389–1402 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mezrich, J. D. et al. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J. Immunol. 185, 3190–3198 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Prendergast, G. C., Malachowski, W. P., DuHadaway, J. B. & Muller, A. J. Discovery of IDO1 inhibitors: from bench to bedside. Cancer Res. 77, 6795–6811 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li, H. et al. The landscape of cancer cell line metabolism. Nat. Med. 25, 850–860 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Röhrig, U. F., Majjigapu, S. R., Vogel, P., Zoete, V. & Michielin, O. Challenges in the discovery of indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. J. Med. Chem. 58, 9421–9437 (2015).

    Article  PubMed  Google Scholar 

  11. Dounay, A. B., Tuttle, J. B. & Verhoest, P. R. Challenges and opportunities in the discovery of new therapeutics targeting the kynurenine pathway. J. Med. Chem. 58, 8762–8782 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Günther, J., Däbritz, J. & Wirthgen, E. Limitations and off-target effects of tryptophan-related IDO inhibitors in cancer treatment. Front. Immunol. 10, 1801 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jennings, M. R., Munn, D. & Blazeck, J. Immunosuppressive metabolites in tumoral immune evasion: redundancies, clinical efforts, and pathways forward. J. Immunother. Cancer 9, e003013 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Triplett, T. A. et al. Reversal of indoleamine 2,3-dioxygenase-mediated cancer immune suppression by systemic kynurenine depletion with a therapeutic enzyme. Nat. Biotechnol. 36, 758–764 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Karamitros, C. S. et al. Conformational dynamics contribute to substrate selectivity and catalysis in human kynureninase. ACS Chem. Biol. 15, 3159–3166 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Pokrovsky, V. S., Kazanov, M. D., Dyakov, I. N., Pokrovskaya, M. V. & Aleksandrova, S. S. Comparative immunogenicity and structural analysis of epitopes of different bacterial l-asparaginases. BMC Cancer 16, 89 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mayer, A. et al. Modifying an immunogenic epitope on a therapeutic protein: a step towards an improved system for antibody-directed enzyme prodrug therapy (ADEPT). Br. J. Cancer 90, 2402–2410 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Trudeau, D. L. & Tawfik, D. S. Protein engineers turned evolutionists—the quest for the optimal starting point. Curr. Opin. Biotechnol. 60, 46–52 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Goldsmith, M. & Tawfik, D. S. Enzyme engineering: reaching the maximal catalytic efficiency peak. Curr. Opin. Struct. Biol. 47, 140–150 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Zakas, P. M. et al. Enhancing the pharmaceutical properties of protein drugs by ancestral sequence reconstruction. Nat. Biotechnol. 35, 35–37 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Thomas, A., Cutlan, R., Finnigan, W., van der Giezen, M. & Harmer, N. Highly thermostable carboxylic acid reductases generated by ancestral sequence reconstruction. Commun. Biol. 2, 429 (2019).

  22. Merkl, R. & Sterner, R. Reconstruction of ancestral enzymes. Perspect. Sci. 9, 17–23 (2016).

    Article  Google Scholar 

  23. Gumulya, Y. et al. Engineering highly functional thermostable proteins using ancestral sequence reconstruction. Nat. Catal. 1, 878–888 (2018).

    Article  CAS  Google Scholar 

  24. Trifinopoulos, J., Nguyen, L.-T., von Haeseler, A. & Minh, B. Q. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44, W232–W235 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bloom, J. D. & Arnold, F. H. In the light of directed evolution: pathways of adaptive protein evolution. Proc. Natl Acad. Sci. USA 106, 9995–10000 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tawfik, D. S. Enzyme promiscuity and evolution in light of cellular metabolism. FEBS J. 287, 1260–1261 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Khersonsky, O., Roodveldt, C. & Tawfik, D. S. Enzyme promiscuity: evolutionary and mechanistic aspects. Curr. Opin. Chem. Biol. 10, 498–508 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Leveson-Gower, R. B., Mayer, C. & Roelfes, G. The importance of catalytic promiscuity for enzyme design and evolution. Nat. Rev. Chem. 3, 687–705 (2019).

    Article  CAS  Google Scholar 

  29. Romero, P. A. & Arnold, F. H. Exploring protein fitness landscapes by directed evolution. Nat. Rev. Mol. Cell Biol. 10, 866–876 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bloom, J. D., Labthavikul, S. T., Otey, C. R. & Arnold, F. H. Protein stability promotes evolvability. Proc. Natl Acad. Sci. USA 103, 5869 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Firnberg, E. & Ostermeier, M. PFunkel: efficient, expansive, user-defined mutagenesis. PLoS ONE 7, e52031 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Coco, W. M. et al. DNA shuffling method for generating highly recombined genes and evolved enzymes. Nat. Biotechnol. 19, 354–359 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Gupta, R. D. & Tawfik, D. S. Directed enzyme evolution via small and effective neutral drift libraries. Nat. Methods 5, 939–942 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Weinreich, D. M., Delaney, N. F., Depristo, M. A. & Hartl, D. L. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312, 111–114 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Tracewell, C. A. & Arnold, F. H. Directed enzyme evolution: climbing fitness peaks one amino acid at a time. Curr. Opin. Chem. Biol. 13, 3–9 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lima, S., Kumar, S., Gawandi, V., Momany, C. & Phillips, R. S. Crystal structure of the Homo sapiens kynureninase-3-hydroxyhippuric acid inhibitor complex: insights into the molecular basis of kynureninase substrate specificity. J. Med. Chem. 52, 389–396 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Wang, S. & Dai, L. Evolving generalists in switching rugged landscapes. PLoS Comput. Biol. 15, e1007320 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kvitek, D. J. & Sherlock, G. Reciprocal sign epistasis between frequently experimentally evolved adaptive mutations causes a rugged fitness landscape. PLoS Genet. 7, e1002056 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Poelwijk, F. J., Tănase-Nicola, S., Kiviet, D. J. & Tans, S. J. Reciprocal sign epistasis is a necessary condition for multi-peaked fitness landscapes. J. Theor. Biol. 272, 141–144 (2011).

    Article  PubMed  Google Scholar 

  40. Yang, G. et al. Higher-order epistasis shapes the fitness landscape of a xenobiotic-degrading enzyme. Nat. Chem. Biol. 15, 1120–1128 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Lima, S., Khristoforov, R., Momany, C. & Phillips, R. S. Crystal structure of Homo sapiens kynureninase. Biochemistry 46, 2735–2744 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Momany, C., Levdikov, V., Blagova, L., Lima, S. & Phillips, R. S. Three-dimensional structure of kynureninase from Pseudomonas fluorescens. Biochemistry 43, 1193–1203 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Wales, T. E. & Engen, J. R. Hydrogen exchange mass spectrometry for the analysis of protein dynamics. Mass Spectrom. Rev. 25, 158–170 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Toh, J. W. T. et al. The potential value of immunotherapy in colorectal cancers: review of the evidence for programmed death-1 inhibitor therapy. Clin. Colorectal Cancer 15, 285–291 (2016).

    Article  PubMed  Google Scholar 

  45. Labadie, B. W., Bao, R. & Luke, J. J. Reimagining IDO pathway inhibition in cancer immunotherapy via downstream focus on the tryptophan–kynurenine–aryl hydrocarbon axis. Clin. Cancer Res. 25, 1462–1471 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Hawkins, D. S. et al. Asparaginase pharmacokinetics after intensive polyethylene glycol-conjugated l-asparaginase therapy for children with relapsed acute lymphoblastic leukemia. Clin. Cancer Res. 10, 5335–5341 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Guttmann, A., Krasnokutsky, S., Pillinger, M. H. & Berhanu, A. Pegloticase in gout treatment—safety issues, latest evidence and clinical considerations. Ther. Adv. Drug Saf. 8, 379–388 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Aharoni, A. et al. The ‘evolvability’ of promiscuous protein functions. Nat. Genet. 37, 73–76 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Soskine, M. & Tawfik, D. S. Mutational effects and the evolution of new protein functions. Nat. Rev. Genet. 11, 572–582 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Buller, A. R. et al. Directed evolution mimics allosteric activation by stepwise tuning of the conformational ensemble. J. Am. Chem. Soc. 140, 7256–7266 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liang, Z.-X., Tsigos, I., Bouriotis, V. & Klinman, J. P. Impact of protein flexibility on hydride-transfer parameters in thermophilic and psychrophilic alcohol dehydrogenases. J. Am. Chem. Soc. 126, 9500–9501 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Pabis, A., Risso, V. A., Sanchez-Ruiz, J. M. & Kamerlin, S. C. Cooperativity and flexibility in enzyme evolution. Curr. Opin. Struct. Biol. 48, 83–92 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Klinman, J. P. Dynamically achieved active site precision in enzyme catalysis. Acc. Chem. Res. 48, 449–456 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Nestl, B. M. & Hauer, B. Engineering of flexible loops in enzymes. ACS Catal. 4, 3201–3211 (2014).

    Article  CAS  Google Scholar 

  55. Zhang, J., Balsbaugh, J. L., Gao, S., Ahn, N. G. & Klinman, J. P. Hydrogen deuterium exchange defines catalytically linked regions of protein flexibility in the catechol O-methyltransferase reaction. Proc. Natl Acad. Sci. USA 117, 10797–10805 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Campbell, E. et al. The role of protein dynamics in the evolution of new enzyme function. Nat. Chem. Biol. 12, 944–950 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. González, M. M., Abriata, L. A., Tomatis, P. E. & Vila, A. J. Optimization of conformational dynamics in an epistatic evolutionary trajectory. Mol. Biol. Evol. 33, 1768–1776 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ramanathan, A. & Agarwal, P. K. Evolutionarily conserved linkage between enzyme fold, flexibility, and catalysis. PLoS Biol. 9, e1001193 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Otten, R. et al. How directed evolution reshapes the energy landscape in an enzyme to boost catalysis. Science 370, 1442–1446 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. Molineux, G. Pegylation: engineering improved pharmaceuticals for enhanced therapy. Cancer Treat. Rev. 28, 13–16 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Vita, R. et al. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res. 47, D339–D343 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Kyn Therapeutics Enters into Global Strategic Collaboration with Celgene to Develop Immuno-oncology Therapies (Ikena Oncology, 2019); https://ir.ikenaoncology.com/news-releases/news-release-details/kyn-therapeutics-enters-global-strategic-collaboration-celgene

  63. Deboer, H. A., Comstock, L. J. & Vasser, M. The Tac promoter—a functional hybrid derived from the Trp and Lac promoters. Proc. Natl Acad. Sci. USA 80, 21–25 (1983).

    Article  CAS  Google Scholar 

  64. Thomason, L., Costantino, N. & Court, D. E. coli genome manipulation by P1 transduction. Curr. Protoc. Mol. Biol. 79, 1.17.1–1.17.8 (2007).

    Article  Google Scholar 

  65. Miroux, B. & Walker, J. E. Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J. Mol. Biol. 260, 289–298 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang, N., Yu, X., Zhang, X. & D’Arcy, S. HD-eXplosion: visualization of hydrogen–deuterium exchange data as chiclet and volcano plots with statistical filtering. Bioinformatics 37, 1926–1927 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (1 RO1 CA189623), Cancer Prevention and Research Institute of Texas (grant DP150061) and Ikena Oncology (all to G.G. and E.S.), funding from the University of Texas System Proteomics network (to S.D.), grants R01GM104896 and R01GM125882 from the National Institutes of Health (both to Y.J.Z.) and postdoctoral fellowships from the American Cancer Society (grant 128252-PF-15-143-01-CDD to J.B. and grant 123506-PF-13-354-01-CDD to N.M.).

Author information

Authors and Affiliations

Authors

Contributions

J.B., C.S.K., K.F., A.Q., C.S., N.M., A.S., B.T., W.-C.L., M.Y.S. and N.A. designed and performed the directed evolution experiments and KYNase enzyme characterizations. C.S.K. and K.A.J. designed and performed the pre-steady-state kinetics experiments. N.T.B. and Y.J.Z. designed and performed the crystallization experiments. C.S.K., K. Murray and S.D. designed and performed the HDX experiments. Y.K., C.L., Y.T., C.S.K., J.B. and C.S. expressed and prepared enzymes for the in vivo and stopped-flow kinetics studies. S.C., M.M., X.M.Z. and K. McGovern designed and performed the in vivo experiments. J.B., C.S.K., G.G., E.S., K.A.J., S.D. and Y.J.Z. interpreted the data. C.S.K., G.G. and J.B. wrote the manuscript.

Corresponding authors

Correspondence to John Blazeck, Christos S. Karamitros or George Georgiou.

Ethics declarations

Competing interests

J.B., C.S.K., N.M., W.-C.L., G.G. and E.S. are inventors on intellectual property related to this work, including the active patent US9975959B2 and the pending patents US20190350975A1 and US20210207110A1, which are assigned to the Board of Regents of the University of Texas System. G.G., E.S., X.M.Z., K. McGovern, S.C. and M.M. have equity interest in Ikena Oncology, a company pursuing the commercial development of this technology. J.B., C.S.K., C.L. and E.S. have consulted for Ikena Oncology (previously Kyn Therapeutics). The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–20 and Tables 1–5.

Reporting Summary

Supplementary Table 6

Sequences of the oligonucleotides used in this study.

Source data

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blazeck, J., Karamitros, C.S., Ford, K. et al. Bypassing evolutionary dead ends and switching the rate-limiting step of a human immunotherapeutic enzyme. Nat Catal 5, 952–967 (2022). https://doi.org/10.1038/s41929-022-00856-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00856-6

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer