Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Non-innocent electrophiles unlock exogenous base-free coupling reactions

Abstract

Numerous important transition metal-catalysed reactions rely on stoichiometric quantities of an exogenous base to enable catalytic turnover. Despite playing a fundamental role, the base poses major challenges, such as restricting the accessible chemical space or causing heterogeneous reaction mixtures. Here we introduce a unifying strategy that eliminates the need for an exogenous base through the use of non-innocent electrophiles (NIE), which are equipped with a masked base that is released in a controlled fashion during the reaction. The universal applicability of this concept was demonstrated by turning multiple, traditionally base-dependent, catalytic reactions into exogenous base-free homogeneous processes. Furthermore, the advantageous features of NIEs were demonstrated in multiple applications, such as in a micromole-scale fluorescence-based assay. This led to the discovery of a Ni-catalysed deoxygenation reaction of aryl carbamates using isopropanol as a benign reductant. In a broader context, this work provides a conceptual blueprint for the strategic utilization of NIEs in catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Context of this work.
Fig. 2: Reactivity assessment and optimized conditions.
Fig. 3: Scope of the exogenous base-free BHA, MHR and SMC.
Fig. 4: Extension of reactivity and scale-down experiments.
Fig. 5: Fluorescence-based reactivity assay.
Fig. 6: Micromole-scale fluorescence-based assay for reaction discovery using NIEs.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article and its Supplementary Information. All data are available from the authors upon reasonable request. Crystallographic data for compounds 22 and 30 were deposited on the Cambridge Structural Database and are freely available via the Cambridge Crystallographic Data Centre under CCDC numbers 2070177 and 2070176.

References

  1. Diederich, F. & Stang, P. (eds) Metal-Catalyzed Cross-Coupling Reactions (Wiley, 2008).

  2. Suzuki, A. Cross-coupling reactions of organoboranes: an easy way to construct C-C bonds (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 50, 6722–6737 (2011).

    Article  CAS  Google Scholar 

  3. Wu, X.-F., Anbarasan, P., Neumann, H. & Beller, M. From noble metal to Nobel Prize: palladium-catalyzed coupling reactions as key methods in organic synthesis. Angew. Chem. Int. Ed. Engl. 49, 9047–9050 (2010).

    Article  CAS  Google Scholar 

  4. Magano, J. & Dunetz, J. R. Large-scale applications of transition metal-catalyzed couplings for the synthesis of pharmaceuticals. Chem. Rev. 111, 2177–2250 (2011).

    Article  CAS  Google Scholar 

  5. Ruiz-Castillo, P. & Buchwald, S. L. Applications of palladium-catalyzed C−N cross-coupling reactions. Chem. Rev. 116, 12564–12649 (2016).

    Article  CAS  Google Scholar 

  6. Meyers, C. et al. Study of a new rate increasing "base effect" in the palladium-catalyzed amination of aryl iodides. J. Org. Chem. 69, 6010–6017 (2004).

    Article  CAS  Google Scholar 

  7. Kuethe, J. T., Childers, K. G., Humphrey, G. R., Journet, M. & Peng, Z. A rapid, large-scale synthesis of a potent cholecystokinin (CCK) 1R receptor agonist. Org. Process Res. Dev. 12, 1201–1208 (2008).

    Article  CAS  Google Scholar 

  8. Kashani, S. K., Jessiman, J. E. & Newman, S. G. Exploring homogeneous conditions for mild Buchwald-Hartwig amination in batch and flow. Org. Process Res. Dev. 24, 1948–1954 (2020).

    Article  CAS  Google Scholar 

  9. Buitrago Santanilla, A. et al. Nanomole-scale high-throughput chemistry for the synthesis of complex molecules. Science 347, 49–53 (2015).

    Article  CAS  Google Scholar 

  10. Brusoe, A. T. & Hartwig, J. F. Palladium-catalyzed arylation of fluoroalkylamines. J. Am. Chem. Soc. 137, 8460–8468 (2015).

  11. Cox, P. A. et al. Base-catalyzed aryl-B(OH)2 protodeboronation revisited: from concerted proton transfer to liberation of a transient aryl anion. J. Am. Chem. Soc. 139, 13156–13165 (2017).

  12. Dennis, J. M., White, N. A., Liu, R. Y. & Buchwald, S. L. Breaking the base barrier: an electron-deficient palladium catalyst enables the use of a common soluble base in C–N coupling. J. Am. Chem. Soc. 140, 4721–4725 (2018).

  13. Liu, R. Y., Dennis, J. M. & Buchwald, S. L. The quest for the ideal base: rational design of a nickel precatalyst enables mild, homogeneous C−N cross-coupling. J. Am. Chem. Soc. 142, 4500–4507 (2020).

  14. Prashad, M. et al. β-hydrogen-containing sodium alkoxides as suitable bases in palladium-catalyzed aminations of aryl halides. J. Org. Chem. 65, 2612–2614 (2000).

  15. Trost, B. M. The atom economy–a search for synthetic efficiency. Science 254, 1471–1477 (1991).

  16. Sheldon, R. A. Atom efficiency and catalysis in organic synthesis. Pure Appl. Chem. 72, 1233–1246 (2000).

    Article  CAS  Google Scholar 

  17. Anastas, P. T., Kirchhoff, M. M. & Williamson, T. C. Catalysis as a foundational pillar of green chemistry. Appl. Catal. A Gen. 221, 3–13 (2001).

  18. Roglans, A., Pla-Quintana, A. & Moreno-Mañas, M. Diazonium salts as substrates in palladium-catalyzed cross-coupling reactions. Chem. Rev. 106, 4622–4643 (2006).

  19. Chen, L., Sanchez, D. R., Zhang, B. & Carrow, B. P. “Cationic“ Suzuki–Miyaura coupling with acutely base-sensitive boronic acids. J. Am. Chem. Soc. 139, 12418–12421 (2017).

  20. Ohashi, M., Saijo, H., Shibata, M. & Ogochi, S. Palladium-catalyzed base-free Suzuki–Miyaura coupling reactions of fluorinated alkenes and arenes via a palladium fluoride key intermediate. Eur. J. Org. Chem. 443–447 (2013).

  21. Wang, Y., Wu, S.-B., Shi, W.-J. & Shi, Z.-J. C‒O/C‒H coupling of polyfluoroarenes with aryl carbamates by cooperative Ni/Cu catalysis. Org. Lett. 18, 2548–2551 (2016).

  22. Stephan, M. S., Teunissen, A. J. J. M., Verzijl, G. K. M. & de Vries, J. G. Heck reactions without salt formation: aromatic carboxylic anhydrides as arylating agents. Angew. Chem. Int. Ed. 37, 662–664 (1998).

  23. Malapit, C. A., Bour, J. R., Brigham, C. E. & Sanford, M. S. Base-free nickel-catalysed decarbonylative Suzuki–Miyaura coupling of acid fluorides. Nature 563, 100–104 (2018).

    Article  CAS  Google Scholar 

  24. Kakiuchi, F., Usui, M., Ueno, S., Chatani, N. & Murai, S. Ruthenium-catalyzed functionalization of aryl carbon–oxygen bonds in aromatic ethers with organoboron compounds. J. Am. Chem. Soc. 126, 2706–2707 (2004).

  25. Zhao, Y. & Snieckus, V. Ester-directed Ru-catalyzed C–O activation/C–C coupling reaction of ortho-methoxy naphthoates with organoboroneopentylates. Chem. Commun. 52, 1681–1684 (2016).

    Article  CAS  Google Scholar 

  26. Nishizawa, A. et al. Nickel-catalyzed decarboxylation of aryl carbamates for converting phenols into aromatic amines. J. Am. Chem. Soc. 141, 7261–7265 (2019).

  27. Zarate, C., van Gemmeren, M., Somerville, R. J. & Martin, R. Chapter Four – phenol derivatives: modern electrophiles in cross-coupling reactions. Adv. Organomet. Chem. 66, 143–222 (2016).

  28. Atkins, K. E., Walker, W. E. & Manyik, R. M. Palladium catalyzed transfer of allylic groups. Tetrahedron Lett. 11, 3821–3824 (1970).

    Article  Google Scholar 

  29. Trost, B. M. & Molander, G. A. Neutral alkylations via palladium(0) catalysis. J. Am. Chem. Soc. 103, 5969–5972 (1981).

    Article  CAS  Google Scholar 

  30. Tsuji, J., Shimizu, I., Minami, I. & Ohashi, Y. Facile palladium catalyzed decarboxylative allylation of active methylene compounds under neutral conditions using allylic carbonates. Tetrahedron Lett. 23, 4809–4812 (1982).

  31. Shimasaki, T., Tobisu, M. & Chatani, N. Nickel-catalyzed amination of aryl pivalates by the cleavage of aryl C−O bonds. Angew. Chem. Int. Ed. 49, 2929–2932 (2010).

  32. Mesganaw, T. et al. Nickel-catalyzed amination of aryl carbamates and sequential site-selective cross-couplings. Chem. Sci. 2, 1766–1771 (2011).

    Article  CAS  Google Scholar 

  33. Ehle, A. R., Zhou, Q. & Watson, M. P. Nickel(0)-Catalyzed Heck Cross-Coupling via Activation of Aryl C−OPiv Bonds. Org. Lett. 14, 1202–1205 (2012).

    Article  CAS  Google Scholar 

  34. Quasdorf, K. W., Riener, M., Petrova, K. V. & Garg, N. K. Suzuki−Miyaura coupling of aryl carbamates, carbonates, and sulfamates. J. Am. Chem. Soc. 131, 17748–17749 (2009).

  35. Antoft-Finch, A., Blackburn, T. & Snieckus, V. N,N-Diethyl O-carbamate: directed metalation group and orthogonal Suzuki–Miyaura cross-coupling partner. J. Am. Chem. Soc. 131, 17750–17752 (2009).

  36. Takise, R., Muto, K., Yamaguchi, J. & Itami, K. Nickel-catalyzed α-arylation of ketones with phenol derivatives. Angew. Chem. Int. Ed. 53, 6791–6794 (2014).

  37. Harada, T., Ueda, Y., Iwai, T. & Sawamura, M. Nickel-catalyzed amination of aryl fluorides with primary amines. Chem. Commun. 54, 1718–1721 (2018).

    Article  CAS  Google Scholar 

  38. Muto, K., Yamaguchi, J. & Itami, K. Nickel-catalyzed C−H/C−O coupling of azoles with phenol derivatives. J. Am. Chem. Soc. 134, 169–172 (2012).

  39. Huang, K., Yu, D.-G., Zheng, S.-F., Wu, Z.-H. & Shi, Z.-J. Borylation of aryl and alkenyl carbamates through Ni-catalyzed C−O activation. Chem. Eur. J. 17, 786–791 (2011).

  40. Takise, R., Itami, K. & Yamaguchi, J. Cyanation of phenol derivatives with aminoacetonitriles by nickel catalysis. Org. Lett. 18, 4428–4431 (2016).

  41. Gu, Y. & Martín, R. Ni-catalyzed stannylation of aryl esters via C−O bond cleavage. Angew. Chem. Int. Ed. 56, 3187–3190 (2017).

  42. Shevlin, M. Practical high-throughput experimentation for chemists. ACS Med. Chem. Lett. 8, 601–607 (2017).

  43. Mennen, S. M. et al. The evolution of high-throughput experimentation in pharmaceutical development and perspectives on the future. Org. Process Res. Dev. 23, 1213–1242 (2019).

  44. Schafer, W., Bu. X., Gong X., Joyce, L. A. & Welch, C. J. in Comprehensive Organic Synthesis II 2nd edn, Vol. 9 (eds Knochel. P. & Molander, G. A.) 28–53 (Elsevier, 2014).

  45. Collins, K. D., Gensch, T. & Glorius, F. Contemporary screening approaches to reaction discovery and development. Nat. Chem. 6, 859–871 (2014).

    Article  CAS  Google Scholar 

  46. Shaughnessy, K. H., Kim, P. & Hartwig, J. F. A fluorescence-based assay for high-throughput screening of coupling reactions. Application to Heck chemistry. J. Am. Chem. Soc. 121, 2123–2132 (1999).

  47. Barder, T. E. & Buchwald, S. L. Benchtop monitoring of reaction progress via visual recognition with a handheld UV lamp: in situ monitoring of boronic acids in the Suzuki–Miyaura reaction. Org. Lett. 9, 137–139 (2007).

  48. Mesganaw, T., Fine Nathel, N. F. & Garg, N. K. Cine substitution of arenes using the aryl carbamate as a removable directing group. Org. Lett. 14, 2918–2921 (2012).

  49. Yasui, K., Higashino, M., Chatani, N. & Tobisu, M. Rhodium-catalyzed reductive cleavage of aryl carbamates using isopropanol as a reductant. Synlett 28, 2569–2572 (2017).

  50. Yu, D.-G. & Shi, Z.-J. Mutual activation: Suzuki–Miyaura coupling through direct cleavage of the sp2 C−O bond of naphtholate. Angew. Chem. Int. Ed. 50, 7097–7100 (2011).

Download references

Acknowledgements

ETH Zurich is acknowledged for financial support. G.T. acknowledges the Studienstiftung des deutschen Volkes (German Academic Scholarship Foundation) for a predoctoral scholarship. We thank the NMR, MS (MoBiAS) and X-ray (SMoCC) technology platforms at ETH Zurich for technical assistance. H. Schmitt (ETH Zurich) is acknowledged for reproducing results. We thank J. W. Bode (ETH Zurich) for access to the fluorescence microplate reader and A. Schuhmacher (ETH Zurich) for instruction and technical assistance. The authors thank the Morandi group for discussion and proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

G.T. conceived the project. G.T. designed and performed the experimental studies. B.M. supervised the research. Both authors contributed to the writing and editing of the final manuscript.

Corresponding author

Correspondence to Bill Morandi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Michael Shevlin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–16, Tables 1–31 and refs.

Supplementary Data 1

Crystallographic data of compound 30.

Supplementary Data 2

Crystallographic data of compound 22.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toupalas, G., Morandi, B. Non-innocent electrophiles unlock exogenous base-free coupling reactions. Nat Catal 5, 324–331 (2022). https://doi.org/10.1038/s41929-022-00770-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00770-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing