Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Elucidating electron-transfer events in polypyridine nickel complexes for reductive coupling reactions

Abstract

Polypyridine-ligated nickel complexes are widely used as privileged catalysts in a variety of cross-coupling reactions. The rapid adoption of these complexes is tentatively attributed to their ability to shuttle between different oxidation states and engage in electron-transfer reactions. However, these reactions are poorly understood in mechanistic terms. Here we investigate the reactivity of pseudohalide- and halide-ligated Ni(II) complexes, containing polypyridine ligands, in electron-transfer reactions. Specifically, Ni(II) halide complexes trigger comproportionation with Ni(0) with exceptional ease en route to Ni(I)Ln species, whereas the corresponding Ni(II) pseudohalide congeners are resistant to electron transfer, with Ni(I) pseudohalides being prone to disproportionation events. These observations are corroborated by electrochemical techniques and detailed quantum mechanical calculations. We also show that catalytically inactive Ni(II) pseudohalide complexes can be reactivated in the presence of exogeneous salts. From a broader perspective, this study provides rationalizations for overlooked and fundamental steps within the Ni-catalysed cross-coupling arena, thus offering blueprints for designing future Ni-catalysed reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ambiguity in electron transfer.
Fig. 2: Considerations for studying Ni polypyridine complexes.
Fig. 3: Effect of anonic ligands on electron transfer.
Fig. 4: Computational study of comproportionation.
Fig. 5: Electrochemical studies and stoichiometric reduction studies.
Fig. 6: Catalytic relevance of electron transfer.

Similar content being viewed by others

Data availability

Experimental procedures and characterization data for the stochiometric experiments, catalysts and the synthesized compounds along with computational information are included in the Supplementary Information. Crystallographic data are available from the Cambridge Crystallographic Data Centre with the following codes: 3d (CCDC-2175355), 3c (CCDC-2175356), 3b (CCDC-2175354), 4a-Br (CCDC-2175353), 3a-Br (CCDC-2175357), [NiLi3Cl2(OtBu)3·2THF]2 (CCDC-2175358) and 3e (CCDC-2175352). Other data are available from the corresponding authors upon reasonable request.

References

  1. Diccianni, J. B. & Diao, T. Mechanisms of nickel-catalyzed cross-coupling reactions. Trends Chem. 1, 830–844 (2019).

    Article  CAS  Google Scholar 

  2. Diccianni, J., Lin, Q. & Diao, T. Mechanisms of nickel-catalyzed coupling reactions and applications in alkene functionalization. Acc. Chem. Res. 53, 906–919 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tasker, S. Z., Standley, E. A. & Jamison, T. F. Recent advances in homogeneous nickel catalysis. Nature 509, 299–309 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hazari, N., Melvin, P. R. & Beromi, M. M. Well-defined nickel and palladium precatalysts for cross-coupling. Nat. Rev. Chem. 1, 0025 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Everson, D. A. & Weix, D. J. Cross-electrophile coupling: principles of reactivity and selectivity. J. Org. Chem. 79, 4793–4798 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mohadjer Beromi, M. et al. Mechanistic study of an improved Ni precatalyst for Suzuki–Miyaura reactions of aryl sulfamates: understanding the role of Ni(I) species. J. Am. Chem. Soc. 139, 922–936 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Barth, E. L. et al. Bis(dialkylphosphino)ferrocene-ligated nickel(II) precatalysts for Suzuki–Miyaura reactions of aryl carbonates. Organometallics 38, 3377–3387 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mohadjer Beromi, M., Banerjee, G., Brudvig, G. W., Hazari, N. & Mercado, B. Q. Nickel(I) aryl species: synthesis, properties, and catalytic activity. ACS Catal. 8, 2526–2533 (2018).

    Article  CAS  Google Scholar 

  9. Mohadjer Beromi, M. et al. Modifications to the aryl group of dppf-ligated Ni σ-aryl precatalysts: impact on speciation and catalytic activity in Suzuki–Miyaura coupling reactions. Organometallics 37, 3943–3955 (2018).

    Article  CAS  Google Scholar 

  10. Yanagi, T., Somerville, R. J., Nogi, K., Martin, R. & Yorimitsu, H. Ni-catalyzed carboxylation of C(sp2)–S bonds with CO2: evidence for the multifaceted role of Zn. ACS Catal. 10, 2117–2123 (2020).

    Article  CAS  Google Scholar 

  11. Day, C. S., Somerville, R. J. & Martin, R. Deciphering the dichotomy exerted by Zn(II) in the catalytic sp2 C–O bond functionalization of aryl esters at the molecular level. Nat. Catal. 4, 124–133 (2021).

    Article  CAS  Google Scholar 

  12. Somerville, R. J., Hale, L. V. A., Gómez-Bengoa, E., Burés, J. & Martin, R. Intermediacy of Ni–Ni species in sp2 C–O bond cleavage of aryl esters: relevance in catalytic C–Si bond formation. J. Am. Chem. Soc. 140, 8771–8780 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Somerville, R. J. et al. Ni(I)–alkyl complexes bearing phenanthroline ligands: experimental evidence for CO2 insertion at Ni(I) centers. J. Am. Chem. Soc. 142, 10936–10941 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Heimbach, P. Changes in the coordination number of Ni(0) and Ni(I) compounds. Angew. Chem. Int. Ed. 3, 648 (1964).

    Google Scholar 

  15. Tsou, T. T. & Kochi, J. K. Mechanism of oxidative addition. Reaction of nickel(0) complexes with aromatic halides. J. Am. Chem. Soc. 101, 6319–6332 (1979).

    Article  CAS  Google Scholar 

  16. Cundy, C. S. & Nöth, H. Metal-boron compounds: XI. Complexes derived from reactions of bis(triphenylphosphine)(π-ethylene)nickel with alkyl and boron halides. J. Organomet. Chem. 30, 135–143 (1971).

    Article  CAS  Google Scholar 

  17. Porri, L., Gallazzi, M. C. & Vitulli, G. Complexes of nickel(I) with triphenylphosphine. Chem. Commun., 228–228 (1967).

  18. Beattie, D. D., Lascoumettes, G., Kennepohl, P., Love, J. A. & Schafer, L. L. Disproportionation reactions of an organometallic Ni(I) amidate complex: scope and mechanistic Investigations. Organometallics 37, 1392–1399 (2018).

    Article  CAS  Google Scholar 

  19. Dible, B. R., Sigman, M. S. & Arif, A. M. Oxygen-induced ligand dehydrogenation of a planar bis-μ-chloronickel(I) dimer featuring an NHC ligand. Inorg. Chem. 44, 3774–3776 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Schunn, R. A. Preparation and reactions of triethylphosphine complexes of zerovalent nickel, palladium, and platinum. Inorg. Chem. 15, 208–212 (1976).

    Article  CAS  Google Scholar 

  21. Dürr, A. B., Fisher, H. C., Kalvet, I., Truong, K.-N. & Schoenebeck, F. Divergent reactivity of a dinuclear (NHC)nickel(I) catalyst versus nickel(0) enables chemoselective trifluoromethylselenolation. Angew. Chem. Int. Ed. 56, 13431–13435 (2017).

    Article  Google Scholar 

  22. Kalvet, I., Guo, Q., Tizzard, G. J. & Schoenebeck, F. When weaker can be tougher: the role of oxidation state (I) in P- vs N-ligand-derived Ni-catalyzed trifluoromethylthiolation of aryl halides. ACS Catal. 7, 2126–2132 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kapat, A., Sperger, T., Guven, S. & Schoenebeck, F. E-olefins through intramolecular radical relocation. Science 363, 391–396 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Yuan, M., Song, Z., Badir, S. O., Molander, G. A. & Gutierrez, O. On the nature of C(sp3)–C(sp2) bond formation in nickel-catalyzed tertiary radical cross-couplings: a case study of Ni/photoredox catalytic cross-coupling of alkyl radicals and aryl halides. J. Am. Chem. Soc. 142, 7225–7234 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Phapale, V. B., Guisán-Ceinos, M., Buñuel, E. & Cárdenas, D. J. Nickel-catalyzed cross-coupling of alkyl zinc halides for the formation of C(sp2)—C(sp3) bonds: scope and mechanism. Chem. Eur. J. 15, 12681–12688 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Lin, Q. & Diao, T. Mechanism of Ni-catalyzed reductive 1,2-dicarbofunctionalization of alkenes. J. Am. Chem. Soc. 141, 17937–17948 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mohadjer Beromi, M., Brudvig, G. W., Hazari, N., Lant, H. M. C. & Mercado, B. Q. Synthesis and reactivity of paramagnetic nickel polypyridyl complexes relevant to C(sp2)–C(sp3)coupling reactions. Angew. Chem. Int. Ed. 58, 6094–6098 (2019).

    Article  CAS  Google Scholar 

  28. Ting, S. I., Williams, W. L. & Doyle, A. G. Oxidative addition of aryl halides to a Ni(I)-bipyridine complex. J. Am. Chem. Soc. 144, 5575–5582 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. Till, N. A., Oh, S., MacMillan, D. W. C. & Bird, M. J. The application of pulse radiolysis to the study of Ni(I) intermediates in Ni-catalyzed cross-coupling reactions. J. Am. Chem. Soc. 143, 9332–9337 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Ting, S. I. et al. 3d-d Excited states of Ni(II) complexes relevant to photoredox catalysis: spectroscopic identification and mechanistic implications. J. Am. Chem. Soc. 142, 5800–5810 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Huang, L., Ackerman, L. K. G., Kang, K., Parsons, A. M. & Weix, D. J. LiCl-accelerated multimetallic cross-coupling of aryl chlorides with aryl triflates. J. Am. Chem. Soc. 141, 10978–10983 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Powers, D. C., Anderson, B. L. & Nocera, D. G. Two-electron HCl to H2 photocycle promoted by Ni(II) polypyridyl halide complexes. J. Am. Chem. Soc. 135, 18876–18883 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Juliá-Hernández, F., Moragas, T., Cornella, J. & Martin, R. Remote carboxylation of halogenated aliphatic hydrocarbons with carbon dioxide. Nature 545, 84–88 (2017).

    Article  PubMed  Google Scholar 

  34. Li, Z. et al. Electrochemically enabled, nickel-catalyzed dehydroxylative cross-coupling of alcohols with aryl halides. J. Am. Chem. Soc. 143, 3536–3543 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Molander, G. A., Traister, K. M. & O’Neill, B. T. Engaging nonaromatic, heterocyclic tosylates in reductive cross-coupling with aryl and heteroaryl bromides. J. Org. Chem. 80, 2907–2911 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Dong, Z. & Macmillan, D. W. C. Metallaphotoredox-enabled deoxygenative arylation of alcohols. Nature 598, 451–456 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, Y., Xu, X. & Zhu, S. Nickel-catalysed selective migratory hydrothiolation of alkenes and alkynes with thiols. Nat. Commun. 10, 1752 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Smith, R. T. et al. Metallaphotoredox-catalyzed cross-electrophile Csp3–Csp3 coupling of aliphatic bromides. J. Am. Chem. Soc. 140, 17433–17438 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Peng, L., Li, Z. & Yin, G. Photochemical nickel-catalyzed reductive migratory cross-coupling of alkyl bromides with aryl bromides. Org. Lett. 20, 1880–1883 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. van Gemmeren, M. et al. Switchable site-selective catalytic carboxylation of allylic alcohols with CO2. Angew. Chem. Int. Ed. 56, 6558–6562 (2017).

    Article  Google Scholar 

  41. Tortajada, A., Börjesson, M. & Martin, R. Nickel-catalyzed reductive carboxylation and amidation reactions. Acc. Chem. Res. 54, 3941–3952 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Tortajada, A., Juliá‐Hernández, F., Börjesson, M., Moragas, T. & Martin, R. Transition‐metal‐catalyzed carboxylation reactions with carbon dioxide. Angew. Chem. Int. Ed. 57, 15948–15982 (2018).

    Article  CAS  Google Scholar 

  43. Harris, C. M. & McKenzie, E. D. Nitrogenous chelate complexes of transition metals—III: bis-chelate complexes of nickel (II) with 1,10-phenanthroline, 2,2′-bipyridyl and analogous ligands. J. Inorg. Nucl. Chem. 29, 1047–1068 (1967).

    Article  CAS  Google Scholar 

  44. Kinnunen, T.-J. J., Haukka, M., Pakkanen, T. T. & Pakkanen, T. A. Four-coordinated bipyridine complexes of nickel for ethene polymerization—the role of ligand structure. J. Organomet. Chem. 613, 257–262 (2000).

    Article  CAS  Google Scholar 

  45. Fagnou, K. & Lautens, M. Halide effects in transition metal catalysis. Angew. Chem. Int. Ed. 41, 26–47 (2002).

    Article  CAS  Google Scholar 

  46. Peng, L. et al. Ligand-controlled nickel-catalyzed reductive relay cross-coupling of alkyl bromides and aryl bromides. ACS Catal. 8, 310–313 (2018).

    Article  CAS  Google Scholar 

  47. Tortajada, A., Ninokata, R. & Martin, R. Ni-catalyzed site-selective dicarboxylation of 1,3-dienes with CO2. J. Am. Chem. Soc. 140, 2050–2053 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Eremenko, I. L. et al. Bi- and mononuclear nickel(II) trimethylacetate complexes with pyridine bases as ligands. Inorg. Chem. 38, 3764–3773 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank ICIQ and FEDER/MCI−AEI/PGC2018-096839-B-I00 for financial support. C.S.D. thanks the European Union’s Horizon 2020 under the Marie Curie PREBIST grant agreement 754558. S.J.T. thanks Marie Sklodowska-Curie grant agreement No. 859910. O.G. thanks the NIGMS NIH (R35GM137797), the Camille and Henry Dreyfus Foundation and the Welch Foundation (A-2102-20220331) for funding and Texas A&M University HPRC resources (https://hprc.tamu.edu) for computational resources. We sincerely thank T. Skrydstrup for allowing revisions to be completed using his laboratory space and equipment, J. Benet for X-ray crystallographic data and G. Stoica for assistance with EPR experiments.

Author information

Authors and Affiliations

Authors

Contributions

C.S.D. conceived the project. C.S.D. designed and performed the experimental studies unless otherwise stated. S.J.T. performed parts of the electrochemical experiments, stochiometric reductions and catalytic reactions. A.R.-G. and A.R.G. performed the computational studies. O.G. supervised the computational research. R.M. supervised the experimental research. C.S.D and R.M. prepared the initial manuscript. All authors contributed to discussions, commented on and edited the manuscript.

Corresponding authors

Correspondence to Osvaldo Gutierrez or Ruben Martin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Behrouz Notash and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–75 and Tables 1–4.

Supplementary Data 1

Crystallographic data for compound 3d.

Supplementary Data 2

Crystallographic data for compound 3c.

Supplementary Data 3

Crystallographic data for compound 3b.

Supplementary Data 4

Crystallographic data for compound 4a-Br.

Supplementary Data 5

Crystallographic data for compound 3a-Br.

Supplementary Data 6

Crystallographic data for compound [NiLi3Cl2(OtBu)3·2THF]2.

Supplementary Data 7

Crystallographic data for compound 3e.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Day, C.S., Rentería-Gómez, Á., Ton, S.J. et al. Elucidating electron-transfer events in polypyridine nickel complexes for reductive coupling reactions. Nat Catal 6, 244–253 (2023). https://doi.org/10.1038/s41929-023-00925-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-00925-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing