Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nitrene transfer catalysts for enantioselective C–N bond formation

Abstract

Transition-metal-catalysed, non-enzymatic transformations of C–H and C=C bonds to C–N bonds through nitrene transfer (NT) are powerful synthetic tools to prepare valuable amine building blocks. Although the first examples of racemic NT were reported more than 50 years ago, catalysts that mediate enantioselective NT with a broad substrate scope have been slow to emerge. However, the past ten years have seen the discovery of several first-row, second-row and third-row transition metal catalysts for asymmetric NT. This Review covers recent developments in asymmetric aziridination and C–H bond amination reactions. We describe catalyst design principles, re-evaluate traditional catalyst architectures, show how the scope of nitrene precursors has expanded and present new mechanistic insights. Following this, we highlight remaining opportunities and challenges to developing more practical and general synthetic methodologies. Realizing chemoselective, site-selective and enantioselective intermolecular NT will streamline amine synthesis and allow us to explore new chemical space.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Classical reactions of metal–nitrenes and some catalysts with which they are realized.
Fig. 2: Asymmetric nitrene transfer reactions catalysed by Co complexes of D2-symmetric porphyrins.
Fig. 3: Metal–salen complexes catalyse asymmetric nitrene transfer.
Fig. 4: Dirhodium tetracarboxylates and tetracarboxamidates catalyse asymmetric nitrene transfer.
Fig. 5: Metal complexes of bis(oxazoline) ligands catalyse asymmetric nitrene transfer.
Fig. 6: Chiral half-sandwich complexes for asymmetric nitrene transfer.
Fig. 7: Chiral-at-metal complexes in asymmetric nitrene transfer.

Similar content being viewed by others

References

  1. Ricci, A. Amino Group Chemistry: From Synthesis to the Life Sciences (Wiley, 2008).

  2. Nugent, T. C. (ed.) Chiral Amine Synthesis: Methods, Developments and Applications (Wiley, 2010).

  3. Kwart, H. & Kahn, A. A. Copper-catalyzed decomposition of benzenesulfonyl azide in hydroxylic media. J. Am. Chem. Soc. 89, 1950–1951 (1967).

    Article  CAS  Google Scholar 

  4. Kwart, H. & Khan, A. A. Copper-catalyzed decomposition of benzenesulfonyl azide in cyclohexene solution. J. Am. Chem. Soc. 89, 1951–1953 (1967).

    Article  CAS  Google Scholar 

  5. Dodd, R. H. & Dauban, P. Iminoiodanes and C–N bond formation in organic synthesis. Synlett 11, 1571–1586 (2003).

    Google Scholar 

  6. Díaz-Requejo, M. M. & Pérez, P. J. Coinage metal catalyzed C–H bond functionalization of hydrocarbons. Chem. Rev. 108, 3379–3394 (2008).

    Article  PubMed  CAS  Google Scholar 

  7. Collet, F., Dodd, R. H. & Dauban, P. Catalytic C–H amination: recent progress and future directions. Chem. Commun. 2009, 5061–5074 (2009).

    Article  CAS  Google Scholar 

  8. Fantauzzi, S., Caselli, A. & Gallo, E. Nitrene transfer reactions mediated by metallo-porphyrin complexes. Dalton Trans. 2009, 5434–5443 (2009).

    Article  CAS  Google Scholar 

  9. Zalatan, D. N. & Du Bois, J. Metal-catalyzed oxidations of C–H to C–N bonds. Top. Curr. Chem. 292, 347–378 (2009).

    Article  CAS  Google Scholar 

  10. Davies, H. M., Du Bois, J. & Yu, J.-Q. C–H functionalization in organic synthesis. Chem. Soc. Rev. 40, 1855–1856 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Dequirez, G., Pons, V. & Dauban, P. Nitrene chemistry in organic synthesis: still in its infancy? Angew. Chem. Int. Ed. 51, 7384–7395 (2012).

    Article  CAS  Google Scholar 

  12. Che, C.-M.., Lo., K.-Y.; Zhou, C.-Y. in Comprehensive Organic Synthesis 2nd edn Vol. 7 (eds Knochel, P. & Molander, G. A.) 26–85 (Elsevier, 2014).

  13. Darses, B., Rodrigues, R., Neuville, L., Mazurais, M. & Dauban, P. Transition metal-catalyzed iodine(iii)-mediated nitrene transfer reactions: efficient tools for challenging syntheses. Chem. Commun. 53, 493–508 (2017).

    Article  CAS  Google Scholar 

  14. Park, Y., Kim, Y. & Chang, S. Transition metal-catalyzed C–H amination: scope, mechanism, and applications. Chem. Rev. 117, 9247–9301 (2017). This is an excellent introduction to recent developments in transition-metal-catalyzed aminations of diverse C–H bonds that covers common catalysts and nitrene precursors.

    Article  CAS  PubMed  Google Scholar 

  15. Hazelard, D., Nocquet, P.-A. & Compain, P. Catalytic C–H amination at its limits: challenges and solutions. Org. Chem. Front. 4, 2500–2521 (2017).

    Article  CAS  Google Scholar 

  16. Alderson, J. M., Corbin, J. R. & Schomaker, J. M. Tunable, chemo- and site-selective nitrene transfer reactions through the rational design of silver(i) catalysts. Acc. Chem. Res. 50, 2147–2158 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Kuijpers, P. F., van der Vlugt, J. I., Schneider, S. & de Bruin, B. Nitrene radical intermediates in catalytic synthesis. Chem. Eur. J. 23, 13819–13829 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Collet, F., Lescot, C. & Dauban, P. Catalytic C–H amination: the stereoselectivity issue. Chem. Soc. Rev. 40, 1926–1936 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Degennaro, L., Trinchera, P. & Luisi, R. Recent advances in the stereoselective synthesis of aziridines. Chem. Rev. 114, 7881–7929 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Hayashi, H. & Uchida, T. Nitrene transfer reactions for asymmetric C–H amination: recent development. Eur. J. Org. Chem. 2020, 909–916 (2020). This minireview focuses on recent strategies for asymmetric C–H amination with several nitrogen sources catalysed by molecular catalysts and artificial metalloenzymes.

    Article  CAS  Google Scholar 

  21. Uchida, T. & Katsuki, T. Asymmetric nitrene transfer reactions: sulfimidation, aziridination and C–H amination using azide compounds as nitrene precursors. Chem. Rec. 14, 117–129 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Müller, P. & Fruit, C. Enantioselective catalytic aziridinations and asymmetric nitrene insertions into CH bonds. Chem. Rev. 103, 2905–2920 (2003). This review covers early efforts in catalytic asymmetric aziridination using nitrene and carbene transfer strategies.

    Article  PubMed  CAS  Google Scholar 

  23. Müller, P., Baud, C. & Naegeli, I. Rhodium(ii)-catalyzed nitrene transfer with phenyliodonium ylides. J. Phys. Org. Chem. 11, 597–601 (1998).

    Article  Google Scholar 

  24. Fiori, K. W., Espino, C. G., Brodsky, B. H. & Du Bois, J. A mechanistic analysis of the Rh-catalyzed intramolecular C–H amination reaction. Tetrahedron 65, 3042–3051 (2009).

    Article  CAS  Google Scholar 

  25. Harvey, M. E., Musaev, D. G. & Du Bois, J. A diruthenium catalyst for selective, intramolecular allylic C–H amination: reaction development and mechanistic insight gained through experiment and theory. J. Am. Chem. Soc. 133, 17207–17216 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Maestre, L., Sameera, W. M., Díaz-Requejo, M. M., Maseras, F. & Pérez, P. J. A general mechanism for the copper- and silver-catalyzed olefin aziridination reactions: concomitant involvement of the singlet and triplet pathways. J. Am. Chem. Soc. 135, 1338–1348 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Varela-Álvarez, A. et al. Rh2(ii,iii) catalysts with chelating carboxylate and carboxamidate supports: electronic structure and nitrene transfer reactivity. J. Am. Chem. Soc. 138, 2327–2341 (2016).

    Article  PubMed  CAS  Google Scholar 

  28. Weatherly, C., Alderson, J. M., Berry, J. F., Hein, J. E. & Schomaker, J. M. Catalyst-controlled nitrene transfer by tuning metal:ligand ratios: insight into the mechanisms of chemoselectivity. Organometallics 36, 1649–1661 (2017).

    Article  CAS  Google Scholar 

  29. Liang, J.-L., Yuan, S.-X., Huang, J.-S. & Che, C.-M. Intramolecular C–N bond formation reactions catalyzed by ruthenium porphyrins: amidation of sulfamate esters and aziridination of unsaturated sulfonamides. J. Org. Chem. 69, 3610–3619 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Wentrup, C. Carbenes and nitrenes: recent developments in fundamental chemistry. Angew. Chem. Int. Ed. 57, 11508–11521 (2018).

    Article  CAS  Google Scholar 

  31. Leung, S. K.-Y. et al. Imido transfer from bis(imido)ruthenium(vi) porphyrins to hydrocarbons: effect of imido substituents, C–H bond dissociation energies, and Ru(vi/v) reduction potentials. J. Am. Chem. Soc. 127, 16629–16640 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Lyaskovskyy, V. et al. Mechanism of cobalt(ii) porphyrin-catalyzed C–H amination with organic azides: radical nature and H-atom abstraction ability of the key cobalt(iii)–nitrene intermediates. J. Am. Chem. Soc. 133, 12264–12273 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Xing, Q., Chan, C.-M., Yeung, Y.-W. & Yu, W.-Y. Ruthenium(ii)-catalyzed enantioselective γ-lactams formation by intramolecular C–H amidation of 1,4,2-dioxazol-5-ones. J. Am. Chem. Soc. 141, 3849–3853 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Park, Y. & Chang, S. Asymmetric formation of γ-lactams via C–H amidation enabled by chiral hydrogen-bond-donor catalysts. Nat. Catal. 2, 219–227 (2019). Iridium catalysts with chiral H-bond-donor ligands use convenient 1,4,2-dioxazol-5-ones to produce γ-lactams in excellent ee using non-covalent interactions to control the stereochemical outcome.

    Article  CAS  Google Scholar 

  35. Zhou, Z. et al. Non-C2-symmetric chiral-at-ruthenium catalyst for highly efficient enantioselective intramolecular C(sp3)–H amidation. J. Am. Chem. Soc. 141, 19048–19057 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Aguila, M. J., Badiei, Y. M. & Warren, T. H. Mechanistic insights into C–H amination via dicopper nitrenes. J. Am. Chem. Soc. 135, 9399–9406 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Llaveria, J. et al. Chemo-, regio-, and stereoselective silver-catalyzed aziridination of dienes: scope, mechanistic studies, and ring-opening reactions. J. Am. Chem. Soc. 136, 5342–5350 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, J. et al. Computational advances aiding mechanistic understanding of silver-catalyzed carbene/nitrene/silylene transfer reactions. Coord. Chem. Rev. 382, 69–84 (2019).

    Article  CAS  Google Scholar 

  39. Lai, T.-S., Che, C.-M., Kwong, H.-L. & Peng, S.-M. Catalytic and asymmetric aziridination of alkenes catalysed by a chiral manganese porphyrin complex. Chem. Commun. 1997, 2373–2374 (1997).

    Article  Google Scholar 

  40. Zhou, X.-G., Yu, X.-Q., Huang, J.-S. & Che, C.-M. Asymmetric amidation of saturated C–H bonds catalysed by chiral ruthenium and manganese porphyrins. Chem. Commun. 1999, 2377–2378 (1999).

    Article  Google Scholar 

  41. Liang, J.-L., Yuan, S.-X., Huang, J.-S., Yu, W.-Y. & Che, C.-M. Highly diastereo- and enantioselective intramolecular amidation of saturated C–H bonds catalyzed by ruthenium porphyrins. Angew. Chem. Int. Ed. 41, 3465–3468 (2002).

    Article  CAS  Google Scholar 

  42. Liang, J.-L., Huang, J.-S., Yu, X.-Q., Zhu, N. & Che, C.-M. Metalloporphyrin-mediated asymmetric nitrogen-atom transfer to hydrocarbons: aziridination of alkenes and amidation of saturated C–H bonds catalyzed by chiral ruthenium and manganese porphyrins. Chem. Eur. J. 8, 1563–1572 (2002). Early study that showed how chiral metalloporphyrins catalyse asymmetric aziridination of aromatic alkenes and asymmetric amidation of benzylic hydrocarbons.

    Article  CAS  PubMed  Google Scholar 

  43. Subbarayan, V., Ruppel, J. V., Zhu, S., Perman, J. A. & Zhang, X. P. Highly asymmetric cobalt-catalyzed aziridination of alkenes with trichloroethoxysulfonyl azide (TcesN3). Chem. Commun. 2009, 4266–4268 (2009).

    Article  CAS  Google Scholar 

  44. Jones, J. E., Ruppel, J. V., Gao, G. Y., Moore, T. M. & Zhang, X. P. Cobalt-catalyzed asymmetric olefin aziridination with diphenylphosphoryl azide. J. Org. Chem. 73, 7260–7265 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Tao, J., Jin, L.-M. & Zhang, X. P. Synthesis of chiral N-phosphoryl aziridines through enantioselective aziridination of alkenes with phosphoryl azide via Co(ii)-based metalloradical catalysis. Beilstein J. Org. Chem. 10, 1282–1289 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Jin, L.-M. et al. Effective synthesis of chiral N-fluoroaryl aziridines through enantioselective aziridination of alkenes with fluoroaryl azides. Angew. Chem. Int. Ed. 52, 5309–5313 (2013).

    Article  CAS  Google Scholar 

  47. Hopmann, K. H. & Ghosh, A. Mechanism of cobalt-porphyrin-catalyzed aziridination. ACS Catal. 1, 597–600 (2011).

    Article  CAS  Google Scholar 

  48. Olivos Suarez, A. I., Jiang, H., Zhang, X. P. & de Bruin, B. The radical mechanism of cobalt(ii) porphyrin-catalyzed olefin aziridination and the importance of cooperative H-bonding. Dalton Trans. 40, 5697–5705 (2011).

    Article  CAS  Google Scholar 

  49. Jin, L.-M., Xu, P., Xie, J. & Zhang, X. P. Enantioselective intermolecular radical C–H amination. J. Am. Chem. Soc. 142, 20828–20836 (2020). Co(ii) supported by D2-symmetric amidoporphyrinato ligands catalyses challenging asymmetric intermolecular radical C–H amination of esters with organic azides using non-covalent attractive interactions to achieve high ee.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jiang, H., Lang, K., Lu, H., Wojtas, L. & Zhang, X. P. Asymmetric radical bicyclization of allyl azidoformates via cobalt(ii)-based metalloradical catalysis. J. Am. Chem. Soc. 139, 9164–9167 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li, C. et al. Catalytic radical process for enantioselective amination of C(sp3)–H bonds. Angew. Chem. Int. Ed. 57, 16837–16841 (2018).

    Article  CAS  Google Scholar 

  52. Hu, Y. et al. Enantioselective radical construction of 5-membered cyclic sulfonamides by metalloradical C–H amination. J. Am. Chem. Soc. 141, 18160–18169 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lang, K., Li, C., Kim, I. & Zhang, X. P. Enantioconvergent amination of racemic tertiary C–H bonds. J. Am. Chem. Soc. 142, 20902–20911 (2020). This work describes the first Co(ii) catalysts for enantioconvergent radical amination of racemic tertiary C(sp3)-H bonds to create useful quaternary stereocentres.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lang, K., Torker, S., Wojtas, L. & Zhang, X. P. Asymmetric induction and enantiodivergence in catalytic radical C–H amination via enantiodifferentiative H-atom abstraction and stereoretentive radical substitution. J. Am. Chem. Soc. 141, 12388–12396 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hu, Y. et al. Next-generation D2-symmetric chiral porphyrins for cobalt(ii)-based metalloradical catalysis: catalyst engineering by distal bridging. Angew. Chem. Int. Ed. 58, 2670–2674 (2019).

    Article  CAS  Google Scholar 

  56. Noda, K., Hosoya, N., Irie, R., Ito, Y. & Katsuki, T. Asymmetric aziridination by using optically active (salen)manganese(iii) complexes. Synlett 1993, 469–471 (1993).

    Article  Google Scholar 

  57. Nishikori, H. & Katsuki, T. Catalytic and highly enantioselective aziridination of styrene derivatives. Tetrahedron Lett. 37, 9245–9248 (1996).

    Article  CAS  Google Scholar 

  58. Kohmura, Y. & Katsuki, T. Mn(salen)-catalyzed enantioselective C–H amination. Tetrahedron Lett. 42, 3339–3342 (2001).

    Article  CAS  Google Scholar 

  59. Omura, K., Murakami, M., Uchida, T., Irie, R. & Katsuki, T. Enantioselective aziridination and amination using p-toluenesulfonyl azide in the presence of Ru(salen)(CO) complex. Chem. Lett. 32, 354–355 (2003).

    Article  CAS  Google Scholar 

  60. Omura, K., Uchida, T., Irie, R. & Katsuki, T. Design of a robust Ru(salen) complex: aziridination with improved turnover number using N-arylsulfonyl azides as precursors. Chem. Commun. https://doi.org/10.1039/B407693A (2004).

    Article  Google Scholar 

  61. Kawabata, H., Omura, K. & Katsuki, T. Asymmetric aziridination: a new entry to optically active non-N-protected aziridines. Tetrahedron Lett. 47, 1571–1574 (2006).

    Article  CAS  Google Scholar 

  62. Kawabata, H., Omura, K., Uchida, T. & Katsuki, T. Construction of robust ruthenium(salen)(CO) complexes and asymmetric aziridination with nitrene precursors in the form of azide compounds that bear easily removable N-sulfonyl groups. Chem. Asian J. 2, 248–256 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Kim, C., Uchida, T. & Katsuki, T. Asymmetric olefin aziridination using a newly designed Ru(CO)(salen) complex as the catalyst. Chem. Commun. 48, 7188–7190 (2012).

    Article  CAS  Google Scholar 

  64. Ichinose, M. et al. Enantioselective intramolecular benzylic C–H bond amination: efficient synthesis of optically active benzosultams. Angew. Chem. Int. Ed. 50, 9884–9887 (2011).

    Article  CAS  Google Scholar 

  65. Fukunaga, Y., Uchida, T., Ito, Y., Matsumoto, K. & Katsuki, T. Ru(CO)-salen-catalyzed synthesis of enantiopure aziridinyl ketones and formal asymmetric synthesis of (+)-PD 128907. Org. Lett. 14, 4658–4661 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Nishioka, Y., Uchida, T. & Katsuki, T. Enantio- and regioselective intermolecular benzylic and allylic C–H bond amination. Angew. Chem. Int. Ed. 52, 1739–1742 (2013).

    Article  CAS  Google Scholar 

  67. Müller, P., Baud, C., Jacquier, Y., Moran, M. & Nägeli, I. Rhodium(ii)-catalyzed aziridinations and CH insertions with [N-(p-nitrobenzenesulfonyl)imino]phenyliodinane. J. Phys. Org. Chem. 9, 341–347 (1996).

    Article  Google Scholar 

  68. Nägeli, I. et al. Rhodium(ii)-catalyzed CH insertions with {[(4-nitrophenyl)sulfonyl]imino}phenyl-λ3-iodane. Helv. Chim. Acta 80, 1087–1105 (1997).

    Article  Google Scholar 

  69. Tsutsui, H. et al. Dirhodium(ii) tetrakis[N-tetrafluorophthaloyl-(S)-tert-leucinate]: an exceptionally effective Rh(ii) catalyst for enantiotopically selective aromatic C–H insertions of diazo ketoesters. Tetrahedron Asymmetry 14, 817–821 (2003).

    Article  CAS  Google Scholar 

  70. Yasue, R. & Yoshida, K. Enantioselective desymmetrization of 1,3-disubstituted adamantane derivatives via rhodium-catalyzed C–H bond amination: access to optically active amino acids containing adamantane core. Adv. Synth. Catal. 363, 1662–1671 (2021).

    Article  CAS  Google Scholar 

  71. Reddy, R. P. & Davies, H. M. Dirhodium tetracarboxylates derived from adamantylglycine as chiral catalysts for enantioselective C–H aminations. Org. Lett. 8, 5013–5016 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Nasrallah, A. et al. Catalytic enantioselective intermolecular benzylic C(sp3)–H amination. Angew. Chem. Int. Ed. 58, 8192–8196 (2019).

    Article  CAS  Google Scholar 

  73. Nasrallah, A., Lazib, Y., Boquet, V., Darses, B. & Dauban, P. Catalytic intermolecular C(sp3)–H amination with sulfamates for the asymmetric synthesis of amines. Org. Process. Res. Dev. 24, 724–728 (2019).

    Article  CAS  Google Scholar 

  74. Anada, M. et al. Catalytic enantioselective amination of silyl enol ethers using chiral dirhodium(ii) carboxylates: asymmetric formal synthesis of (−)-metazocine. Org. Lett. 9, 4559–4562 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Hashimoto, S., Tanaka, M., Nakamura, S. & Anada, M. Catalytic asymmetric synthesis of (−)-ritodrine hydrochloride via silyl enol ether amination using dirhodium(ii) tetrakis[tetrafluorophthaloyl-(S)-tert-leucinate]. Heterocycles 76, 1633–1645 (2008).

    Article  Google Scholar 

  76. Tanaka, M., Kurosaki, Y., Washio, T., Anada, M. & Hashimoto, S. Enantioselective amination of silylketene acetals with (N-arylsulfonylimino)phenyliodinanes catalyzed by chiral dirhodium(ii) carboxylates: asymmetric synthesis of phenylglycine derivatives. Tetrahedron Lett. 48, 8799–8802 (2007).

    Article  CAS  Google Scholar 

  77. Anada, M. et al. Asymmetric formal synthesis of (−)-pancracine via catalytic enantioselective C–H amination process. Tetrahedron 65, 3069–3077 (2009).

    Article  CAS  Google Scholar 

  78. Miyazawa, T. et al. Chiral paddle-wheel diruthenium complexes for asymmetric catalysis. Nat. Catal. 3, 851–858 (2020). The first example of chiral paddle-wheel Ru2 complexes exhibiting reactivity and high ee in C–H amination under oxidizing conditions.

    Article  CAS  Google Scholar 

  79. Zalatan, D. N. & Du Bois, J. A chiral rhodium carboxamidate catalyst for enantioselective C–H amination. J. Am. Chem. Soc. 130, 9220–9221 (2008). Early examples of Rh2 complexes supported by chiral lactams enable high site-selective and enantioselective C–H amination using sulfamate esters.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lebel, H., Huard, K. & Lectard, S. N-tosyloxycarbamates as a source of metal nitrenes: rhodium-catalyzed C–H insertion and aziridination reactions. J. Am. Chem. Soc. 127, 14198–14199 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Espino, C. G., Fiori, K. W., Kim, M. & Du Bois, J. Expanding the scope of C–H amination through catalyst design. J. Am. Chem. Soc. 126, 15378–15379 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Fiori, K. W. & Du Bois, J. Catalytic intermolecular amination of C–H bonds: method development and mechanistic insights. J. Am. Chem. Soc. 129, 562–568 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Hoke, T., Herdtweck, E. & Bach, T. Hydrogen-bond mediated regio- and enantioselectivity in a C–H amination reaction catalysed by a supramolecular Rh(ii) complex. Chem. Commun. 49, 8009–8011 (2013).

    Article  CAS  Google Scholar 

  84. Lonergan, D. G., Riego, J. & Deslongchamps, G. A convergent hydroxyimide module for molecular recognition. Tetrahedron Lett. 37, 6109–6112 (1996).

    Article  CAS  Google Scholar 

  85. Lonergan, D. G., Halse, J. & Deslongchamps, G. Comparative probe for stacking interactions in simple A:T base pair mimics. Tetrahedron Lett. 39, 6865–6868 (1998).

    Article  CAS  Google Scholar 

  86. Lonergan, D. G. & Deslongchamps, G. Tricyclic scaffolds for the rapid assembly of abiotic receptors. Tetrahedron 54, 14041–14052 (1998).

    Article  CAS  Google Scholar 

  87. Zhong, F. & Bach, T. Enantioselective construction of 2,3-dihydrofuro[2,3-b]quinolines through supramolecular hydrogen bonding interactions. Chem. Eur. J. 20, 13522–13526 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Annapureddy, R. R., Jandl, C. & Bach, T. A chiral phenanthroline ligand with a hydrogen-bonding site: application to the enantioselective amination of methylene groups. J. Am. Chem. Soc. 142, 7374–7378 (2020).

    Article  CAS  PubMed  Google Scholar 

  89. Desimoni, G., Faita, G. & Jørgensen, K. A. Update 1 of: C2-symmetric chiral bis(oxazoline) ligands in asymmetric catalysis. Chem. Rev. 111, PR284–PR437 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Evans, D. A., Woerpel, K. A., Hinman, M. M. & Faul, M. M. Bis(oxazolines) as chiral ligands in metal-catalyzed asymmetric reactions. Catalytic, asymmetric cyclopropanation of olefins. J. Am. Chem. Soc. 113, 726–728 (1991).

    Article  CAS  Google Scholar 

  91. Evans, D. A., Faul, M. M., Bilodeau, M. T., Anderson, B. A. & Barnes, D. M. Bis(oxazoline)–copper complexes as chiral catalysts for the enantioselective aziridination of olefins. J. Am. Chem. Soc. 115, 5328–5329 (1993).

    Article  CAS  Google Scholar 

  92. Lowenthal, R. E. & Masamune, S. Asymmetric copper-catalyzed cyclopropanation of trisubstituted and unsymmetrical cis-1,2-disubstituted olefins: modified bis-oxazoline ligands. Tetrahedron Lett. 32, 7373–7376 (1991).

    Article  CAS  Google Scholar 

  93. Adam, W., Roschmann, K. J. & Saha-Möller, C. R. Catalytic asymmetric aziridination of enol derivatives in the presence of chiral copper complexes to give optically active α-amino ketones. Eur. J. Org. Chem. 2000, 557–561 (2000).

    Article  Google Scholar 

  94. Dauban, P., Dodd, R., Estéoule, A., Durán, F. & Retailleau, P. Enantioselective intramolecular copper-catalyzed aziridination of sulfamates. Synthesis 2007, 1251–1260 (2007).

    Article  CAS  Google Scholar 

  95. Milczek, E., Boudet, N. & Blakey, S. Enantioselective C–H amination using cationic ruthenium(ii)–pybox catalysts. Angew. Chem. Int. Ed. 47, 6825–6828 (2008).

    Article  CAS  Google Scholar 

  96. Ju, M., Weatherly, C. D., Guzei, I. A. & Schomaker, J. M. Chemo- and enantioselective intramolecular silver-catalyzed aziridinations. Angew. Chem. Int. Ed. 56, 9944–9948 (2017).

    Article  CAS  Google Scholar 

  97. Ju, M. et al. Silver-catalyzed enantioselective propargylic C–H bond amination through rational ligand design. J. Am. Chem. Soc. 142, 12930–12936 (2020). This report showcases the first Ag-catalysed asymmetric nitrene transfer, allowing regioselective and enantioselective amination of propargylic C–H bonds using modular bis(oxazoline) ligands.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang, Y.-Q., Yuan, Y.-A., Liu, G.-S. & Xu, H. Iron(ii)-catalyzed asymmetric intramolecular aminohydroxylation of indoles. Org. Lett. 15, 3910–3913 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Zhu, C.-L., Tian, J.-S., Gu, Z.-Y., Xing, G.-W. & Xu, H. Iron(ii)-catalyzed asymmetric intramolecular olefin aminochlorination using chloride ion. Chem. Sci. 6, 3044–3050 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lu, D.-F., Zhu, C.-L., Sears, J. D. & Xu, H. Iron(ii)-catalyzed intermolecular aminofluorination of unfunctionalized olefins using fluoride ion. J. Am. Chem. Soc. 138, 11360–11367 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhu, C.-L., Lu, D.-F., Sears, J. D., Jia, Z.-X. & Xu, H. Practical synthetic procedures for the iron-catalyzed intermolecular olefin aminohydroxylation using functionalized hydroxylamines. Synthesis 48, 3031–3041 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Nie, X., Yan, Z., Ivlev, S. & Meggers, E. Ruthenium pybox-catalyzed enantioselective intramolecular C–H amination of sulfamoyl azides en route to chiral vicinal diamines. J. Org. Chem. 86, 750–761 (2021).

    Article  CAS  PubMed  Google Scholar 

  103. Li, L. et al. Complementing pyridine-2,6-bis(oxazoline) with cyclometalated N-heterocyclic carbene for asymmetric ruthenium catalysis. Angew. Chem. Int. Ed. 59, 12392–12395 (2020).

    Article  CAS  Google Scholar 

  104. Ju, M. et al. Tunable catalyst-controlled syntheses of β- and γ-amino alcohols enabled by silver-catalysed nitrene transfer. Nat. Catal. 2, 899–908 (2019).

    Article  CAS  Google Scholar 

  105. Charton, M. Nature of the ortho effect. II. Composition of the Taft steric parameters. J. Am. Chem. Soc. 91, 615–618 (1969).

    Article  CAS  Google Scholar 

  106. Charton, M. Steric effects. I. Esterification and acid-catalyzed hydrolysis of esters. J. Am. Chem. Soc. 97, 1552–1556 (1975).

    Article  CAS  Google Scholar 

  107. Charton, M. Steric effects. II. Base-catalyzed ester hydrolysis. J. Am. Chem. Soc. 97, 3691–3693 (1975).

    Article  CAS  Google Scholar 

  108. Charton, M. Steric effects. 7. Additional V constants. J. Org. Chem. 41, 2217–2220 (1976).

    Article  CAS  Google Scholar 

  109. Sigman, M. S. & Miller, J. J. Examination of the role of Taft-type steric parameters in asymmetric catalysis. J. Org. Chem. 74, 7633–7643 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Alderson, J. M., Phelps, A. M., Scamp, R. J., Dolan, N. S. & Schomaker, J. M. Ligand-controlled, tunable silver-catalyzed C–H amination. J. Am. Chem. Soc. 136, 16720–16723 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Dolan, N. S., Scamp, R. J., Yang, T., Berry, J. F. & Schomaker, J. M. Catalyst-controlled and tunable, chemoselective silver-catalyzed intermolecular nitrene transfer: experimental and computational studies. J. Am. Chem. Soc. 138, 14658–14667 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Huang, M., Yang, T., Paretsky, J. D., Berry, J. F. & Schomaker, J. M. Inverting steric effects: using “attractive” noncovalent interactions to direct silver-catalyzed nitrene transfer. J. Am. Chem. Soc. 139, 17376–17386 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Huang, M., Paretsky, J. & Schomaker, J. M. Rigidifying Ag(i) complexes for selective nitrene transfer. ChemCatChem 12, 3076–3081 (2020).

    Article  CAS  Google Scholar 

  114. Nishiyama, H., Itoh, Y., Matsumoto, H., Park, S.-B. & Itoh, K. New chiral ruthenium bis(oxazolinyl)pyridine catalyst. Efficient asymmetric cyclopropanation of olefins with diazoacetates. J. Am. Chem. Soc. 116, 2223–2224 (1994).

    Article  CAS  Google Scholar 

  115. Okamoto, K., Nanya, A., Eguchi, A. & Ohe, K. Asymmetric synthesis of 2H-azirines with a tetrasubstituted stereocenter by enantioselective ring contraction of isoxazoles. Angew. Chem. Int. Ed. 57, 1039–1043 (2018).

    Article  CAS  Google Scholar 

  116. Hong, S. Y. et al. Selective formation of γ-lactams via C–H amidation enabled by tailored iridium catalysts. Science 359, 1016–1021 (2018).

    Article  CAS  PubMed  Google Scholar 

  117. Wang, H. et al. Iridium-catalyzed enantioselective C(sp3)–H amidation controlled by attractive noncovalent interactions. J. Am. Chem. Soc. 141, 7194–7201 (2019).

    Article  CAS  PubMed  Google Scholar 

  118. Fukagawa, S. et al. Enantioselective C(sp3)–H amidation of thioamides catalyzed by a cobaltiii/chiral carboxylic acid hybrid system. Angew. Chem. Int. Ed. 58, 1153–1157 (2019).

    Article  CAS  Google Scholar 

  119. Sekine, D. et al. Chiral 2-aryl ferrocene carboxylic acids for the catalytic asymmetric C(sp3)–H activation of thioamides. Organometallics 38, 3921–3926 (2019).

    Article  CAS  Google Scholar 

  120. Liu, Y.-H. et al. Cp*Co(iii)/MPAA-catalyzed enantioselective amidation of ferrocenes directed by thioamides under mild conditions. Org. Lett. 21, 1895–1899 (2019).

    Article  CAS  PubMed  Google Scholar 

  121. Fukagawa, S., Kojima, M., Yoshino, T. & Matsunaga, S. Catalytic enantioselective methylene C(sp3)–H amidation of 8-alkylquinolines using a Cp*Rhiii/chiral carboxylic acid system. Angew. Chem. Int. Ed. 58, 18154–18158 (2019).

    Article  CAS  Google Scholar 

  122. Farr, C. M. B. et al. Designing a planar chiral rhodium indenyl catalyst for regio- and enantioselective allylic C–H amidation. J. Am. Chem. Soc. 142, 13996–14004 (2020). An exciting advance in the chemoselective, regioselective and enantioselective allylic C–H amidation of unactivated olefins using a planar-chiral indenyl Rh complex.

    Article  CAS  PubMed  Google Scholar 

  123. Zhang, L. & Meggers, E. Stereogenic-only-at-metal asymmetric catalysts. Chem. Asian J. 12, 2335–2342 (2017).

    Article  CAS  PubMed  Google Scholar 

  124. Zheng, Y. et al. Octahedral ruthenium complex with exclusive metal-centered chirality for highly effective asymmetric catalysis. J. Am. Chem. Soc. 139, 4322–4325 (2017).

    Article  CAS  PubMed  Google Scholar 

  125. Zhang, L. & Meggers, E. Steering asymmetric Lewis acid catalysis exclusively with octahedral metal-centered chirality. Acc. Chem. Res. 50, 320–330 (2017).

    Article  CAS  PubMed  Google Scholar 

  126. Qin, J., Zhou, Z., Cui, T., Hemming, M. & Meggers, E. Enantioselective intramolecular C–H amination of aliphatic azides by dual ruthenium and phosphine catalysis. Chem. Sci. 10, 3202–3207 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhou, Z. et al. Enantioselective ring-closing C–H amination of urea derivatives. Chem 6, 1851–1853 (2020).

    Article  CAS  Google Scholar 

  128. Zhou, Z. et al. Catalytic enantioselective intramolecular C(sp3)–H amination of 2-azidoacetamides. Angew. Chem. Int. Ed. 58, 1088–1093 (2019).

    Article  CAS  Google Scholar 

  129. Wang, G., Zhou, Z., Shen, X., Ivlev, S. & Meggers, E. Asymmetric catalysis with a chiral-at-osmium complex. Chem. Commun. 56, 7714–7717 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

E. Zerull, J. Kim and T. A. Trinh are thanked for their helpful comments during the editing of this manuscript. J.M.S. is grateful to the NSF (Award number 1664374) for financial support for this research.

Author information

Authors and Affiliations

Authors

Contributions

M.J. researched data for the article and contributed to the content and writing of the manuscript. J.M.S. contributed to the discussion, writing and reviewing/editing the manuscript before submission.

Corresponding author

Correspondence to Jennifer M. Schomaker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, M., Schomaker, J.M. Nitrene transfer catalysts for enantioselective C–N bond formation. Nat Rev Chem 5, 580–594 (2021). https://doi.org/10.1038/s41570-021-00291-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-021-00291-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing