Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A single-Pt-atom-on-Ru-nanoparticle electrocatalyst for CO-resilient methanol oxidation

Abstract

Single Pt atom catalysts are key targets because a high exposure of Pt substantially enhances electrocatalytic activity. In addition, PtRu alloy nanoparticles are the most active catalysts for the methanol oxidation reaction. To combine the exceptional activity of single Pt atom catalysts with an active Ru support we must overcome the synthetic challenge of forming single Pt atoms on noble metal nanoparticles. Here we demonstrate a process that grows and spreads Pt islands on Ru branched nanoparticles to create single-Pt-atom-on-Ru catalysts. By following the spreading process by in situ TEM, we found that the formation of a stable single atom structure is thermodynamically driven by the formation of strong Pt–Ru bonds and the lowering of the surface energy of the Pt islands. The stability of the single-Pt-atom-on-Ru structure and its resilience to CO poisoning result in a high current density and mass activity for the methanol oxidation reaction over time.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In situ TEM of the spreading process.
Fig. 2: Characterization of the single Pt atoms on a Ru nanoparticle.
Fig. 3: Electrochemical performance of catalysts in the MOR.
Fig. 4: DFT modelling of the MOR pathways for three PtRu nanoparticle catalysts.

Similar content being viewed by others

Data availability

All data are available from the corresponding authors upon reasonable request.

References

  1. Kakati, N. et al. Anode catalysts for direct methanol fuel cells in acidic media: do we have any alternative for Pt or Pt–Ru? Chem. Rev. 114, 12397–12429 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Tripković, A. et al. Methanol electrooxidation on supported Pt and PtRu catalysts in acid and alkaline solutions. Electrochim. Acta 47, 3707–3714 (2002).

    Article  Google Scholar 

  3. Iwasita, T., Hoster, H., John-Anacker, A., Lin, W. F. & Vielstich, W. Methanol oxidation on PtRu electrodes. Influence of surface structure and Pt−Ru atom distribution. Langmuir 16, 522–529 (2000).

    Article  CAS  Google Scholar 

  4. Kabbabi, A. et al. In situ FTIRS study of the electrocatalytic oxidation of carbon monoxide and methanol at platinum–ruthenium bulk alloy electrodes. J. Electroanal. Chem. 444, 41–53 (1998).

    Article  CAS  Google Scholar 

  5. Wang, H. & Baltruschat, H. DEMS study on methanol oxidation at poly- and monocrystalline platinum electrodes: the effect of anion, temperature, surface structure, Ru adatom, and potential. J. Phys. Chem. C 111, 7038–7048 (2007).

    Article  CAS  Google Scholar 

  6. Alayoglu, S., Nilekar, A. U., Mavrikakis, M. & Eichhorn, B. Ru–Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat. Mater. 7, 333–338 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Cuesta, A. At least three contiguous atoms are necessary for CO formation during methanol electrooxidation on platinum. J. Am. Chem. Soc. 128, 13332–13333 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Koper, M. T. M., Shubina, T. E. & van Santen, R. A. Periodic density functional study of CO and OH adsorption on Pt–Ru alloy surfaces: implications for CO tolerant fuel cell catalysts. J. Phys. Chem. B 106, 686–692 (2002).

    Article  CAS  Google Scholar 

  9. Spendelow, J. S., Goodpaster, J. D., Kenis, P. J. A. & Wieckowski, A. Mechanism of CO oxidation on Pt(111) in alkaline media. J. Phys. Chem. B 110, 9545–9555 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Lee, M. J. et al. Understanding the bifunctional effect for removal of CO poisoning: blend of a platinum nanocatalyst and hydrous ruthenium oxide as a model system. ACS Catal. 6, 2398–2407 (2016).

    Article  CAS  Google Scholar 

  11. Huang, L. et al. Shape-control of Pt–Ru nanocrystals: tuning surface structure for enhanced electrocatalytic methanol oxidation. J. Am. Chem. Soc. 140, 1142–1147 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Alinezhad, A. et al. Direct growth of highly strained Pt islands on branched Ni nanoparticles for improved hydrogen evolution reaction activity. J. Am. Chem. Soc. 141, 16202–16207 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Yang, S., Kim, J., Tak, Y. J., Soon, A. & Lee, H. Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angew. Chem. Int. Ed. 55, 2058–2062 (2016).

    Article  CAS  Google Scholar 

  14. Yang, S. & Lee, H. Atomically dispersed platinum on gold nano-octahedra with high catalytic activity on formic acid oxidation. ACS Catal. 3, 437–443 (2013).

    Article  CAS  Google Scholar 

  15. Poerwoprajitno, A. R. et al. Faceted branched nickel nanoparticles with tunable branch length for high‐activity electrocatalytic oxidation of biomass. Angew. Chem. Int. Ed. 59, 15487–15491 (2020).

    Article  CAS  Google Scholar 

  16. Sun, Y. et al. Ultrathin PtPd-based nanorings with abundant step atoms enhance oxygen catalysis. Adv. Mater. 30, 1802136 (2018).

    Article  Google Scholar 

  17. Zhou, M., Li, C. & Fang, J. Noble-metal based random alloy and intermetallic nanocrystals: syntheses and applications. Chem. Rev. 121, 736–795 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Lu, Q. et al. Crystal phase-based epitaxial growth of hybrid noble metal nanostructures on 4H/fcc Au nanowires. Nat. Chem. 10, 456–461 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Gao, R. et al. Pt/Fe2O3 with Pt–Fe pair sites as a catalyst for oxygen reduction with ultralow Pt loading. Nat. Energy 6, 614–623 (2021).

    Article  CAS  Google Scholar 

  20. Gloag, L. et al. Three-dimensional branched and faceted gold–ruthenium nanoparticles: using nanostructure to improve stability in oxygen evolution electrocatalysis. Angew. Chem. Int. Ed. 57, 10241–10245 (2018).

    Article  CAS  Google Scholar 

  21. Gloag, L. et al. A cubic-core hexagonal-branch mechanism to synthesize bi-metallic branched and faceted Pd–Ru nanoparticles for oxygen evolution reaction electrocatalysis. J. Am. Chem. Soc. 140, 12760–12764 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Poerwoprajitno, A. R. et al. Formation of branched ruthenium nanoparticles for improved electrocatalysis of oxygen evolution reaction. Small 15, 1804577 (2019).

    Article  Google Scholar 

  23. Duchesne, P. N. et al. Golden single-atomic-site platinum electrocatalysts. Nat. Mater. 17, 1033–1039 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Liu, J. et al. Integrated catalysis-surface science-theory approach to understand selectivity in the hydrogenation of 1-hexyne to 1-hexene on PdAu single-atom alloy catalysts. ACS Catal. 9, 8757–8765 (2019).

    Article  CAS  Google Scholar 

  25. Hannagan, R. T., Giannakakis, G., Flytzani-Stephanopoulos, M. & Sykes, E. C. H. Single-atom alloy catalysis. Chem. Rev. 120, 12044–12088 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Marcinkowski, M. D. et al. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C–H activation. Nat. Chem. 10, 325–332 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Wei, S. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 13, 856–861 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Kamiya, K., Kamai, R., Hashimoto, K. & Nakanishi, S. Platinum-modified covalent triazine frameworks hybridized with carbon nanoparticles as methanol-tolerant oxygen reduction electrocatalysts. Nat. Commun. 5, 5040 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Yao, Y. et al. High temperature shockwave stabilized single atoms. Nat. Nanotechnol. 14, 851–857 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Xiong, Y. et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 15, 390–397 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Li, D. et al. Surfactant removal for colloidal nanoparticles from solution synthesis: the effect on catalytic performance. ACS Catal. 2, 1358–1362 (2012).

    Article  CAS  Google Scholar 

  32. Hansen, T. W., DeLaRiva, A. T., Challa, S. R. & Datye, A. K. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening? Acc. Chem. Res. 46, 1720–1730 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, Q. et al. Manipulating the surface composition of Pt–Ru bimetallic nanoparticles to control the methanol oxidation reaction pathway. Chem. Commun. 56, 2419–2422 (2020).

    Article  CAS  Google Scholar 

  34. Chung, D. Y., Lee, K.-J. & Sung, Y.-E. Methanol electro-oxidation on the Pt surface: revisiting the cyclic voltammetry interpretation. J. Phys. Chem. C 120, 9028–9035 (2016).

    Article  CAS  Google Scholar 

  35. Hofstead-Duffy, A. M., Chen, D.-J., Sun, S.-G. & Tong, Y. J. Origin of the current peak of negative scan in the cyclic voltammetry of methanol electro-oxidation on Pt-based electrocatalysts: a revisit to the current ratio criterion. J. Mater. Chem. 22, 5205–5208 (2012).

    Article  CAS  Google Scholar 

  36. Zhao, Y., Li, X., Schechter, J. M. & Yang, Y. Revisiting the oxidation peak in the cathodic scan of the cyclic voltammogram of alcohol oxidation on noble metal electrodes. RSC Adv. 6, 5384–5390 (2016).

    Article  CAS  Google Scholar 

  37. Zhao, W.-Y. et al. Highly active and durable Pt72Ru28 porous nanoalloy assembled with sub-4.0 nm particles for methanol oxidation. Adv. Energy Mater. 7, 1601593 (2017).

    Article  Google Scholar 

  38. Lu, S. et al. One-pot synthesis of PtRu nanodendrites as efficient catalysts for methanol oxidation reaction. Nanoscale 9, 1033–1039 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Xue, S. et al. Hexapod PtRuCu nanocrystalline alloy for highly efficient and stable methanol oxidation. ACS Catal. 8, 7578–7584 (2018).

    Article  CAS  Google Scholar 

  40. Yang, J., Li, W., Wang, D. & Li, Y. Electronic metal–support interaction of single‐atom catalysts and applications in electrocatalysis. Adv. Mater. 32, 2003300 (2020).

    Article  CAS  Google Scholar 

  41. Spöri, C., Kwan, J. T. H., Bonakdarpour, A., Wilkinson, D. P. & Strasser, P. The stability challenges of oxygen evolving catalysts: towards a common fundamental understanding and mitigation of catalyst degradation. Angew. Chem. Int. Ed. 56, 5994–6021 (2017).

    Article  Google Scholar 

  42. Chen, Y. X., Miki, A., Ye, S., Sakai, H. & Osawa, M. Formate, an active intermediate for direct oxidation of methanol on Pt electrode. J. Am. Chem. Soc. 125, 3680–3681 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Zhao, L. et al. The oxidation of methanol on PtRu(111): a periodic density functional theory investigation. J. Phys. Chem. C 119, 20389–20400 (2015).

    Article  CAS  Google Scholar 

  44. Chen, D.-J. & Tong, Y. J. Irrelevance of carbon monoxide poisoning in the methanol oxidation reaction on a PtRu electrocatalyst. Angew. Chem. Int. Ed. 54, 9394–9398 (2015).

    Article  CAS  Google Scholar 

  45. Xie, J. et al. Ruthenium–platinum core–shell nanocatalysts with substantially enhanced activity and durability towards methanol oxidation. Nano Energy 21, 247–257 (2016).

    Article  CAS  Google Scholar 

  46. Zhong, W., Liu, Y. & Zhang, D. Theoretical study of methanol oxidation on the PtAu(111) bimetallic surface: CO pathway vs non-CO pathway. J. Phys. Chem. C 116, 2994–3000 (2012).

    Article  CAS  Google Scholar 

  47. Ochal, P. et al. CO stripping as an electrochemical tool for characterization of Ru@Pt core-shell catalysts. J. Electroanal. Chem. 655, 140–146 (2011).

    Article  CAS  Google Scholar 

  48. Du, P., Wu, P. & Cai, C. Mechanism of methanol decomposition on the Pt 3 Ni(111) surface: DFT study. J. Phys. Chem. C 121, 9348–9360 (2017).

    Article  CAS  Google Scholar 

  49. You, G. et al. PtPd(111) surface versus PtAu(111) surface: which one is more active for methanol oxidation? ACS Catal. 8, 132–143 (2018).

    Article  CAS  Google Scholar 

  50. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  CAS  Google Scholar 

  51. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  52. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  53. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  Google Scholar 

  55. Mathew, K., Sundararaman, R., Letchworth-Weaver, K., Arias, T. A. & Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 140, 084106 (2014).

    Article  PubMed  Google Scholar 

  56. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886 (2004).

    Article  Google Scholar 

  57. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Yang, H., Wang, Y., Edwards, A. J., Yan, J. & Zheng, N. High-yield synthesis and crystal structure of a green Au 30 cluster co-capped by thiolate and sulfide. Chem. Commun. 50, 14325–14327 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding under an Australian Research Council Linkage grant (LP150101014, to L.G., J.J.G. and R.D.T.), the Discovery Project (DP190102659 and DP200100143, to R.D.T., and DP210102698, to J.J.G.) and a LIEF grant (LE200100033). A.R.P. thanks the UNSW Scientia PhD Scholarship Scheme. We also acknowledge support from Microscopy Australia and the Mark Wainwright Analytical Centre and Electron Microscope Unit at the University of New South Wales. W.S. acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany´s Excellence Strategy – EXC 2033 – 390677874 – RESOLV. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is managed by Triad National Security for the US DOE’s NNSA under contract 89233218CNA000001. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, a wholly owned subsidiary of Honeywell International, for the US DOE’s National Nuclear Security Administration under contract DE-NA-0003525. The views expressed in this article do not necessarily represent the views of the US DOE or the United States Government. The use of the K3 IS camera was provided courtesy of Gatan. DFT calculations were performed using the National Computational Infrastructure (NCI Australia) at the Australian National University, allocated through both the National Computational Merit Allocation Scheme (NCMAS) and the ANU Merit Allocation Scheme (ANUMAS), and supported by the Australian Research Council (LE190100021). A.H. was supported by award OISE-1357113 from the US National Science Foundation. XAS measurements were performed at the 10-ID-B beamline of the Advanced Photon Source, a US DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract DE-AC02-06CH11357. The 10-ID-B beamline is further supported by the Materials Research Collaborative Access Team and its member institutions. We thank H. Hashiguchi from JEOL for his assistance with TEM imaging presented in Fig. 2b. We thank J. Wright for his assistance with XAS experiments. This work was supported by the National Key Research and Development Program (grant no. 2018YFA0208600). W.Z. is supported by a USTC Tang Scholarship. The calculations were partially performed on the supercomputing system at USTC-SCC.

Author information

Authors and Affiliations

Authors

Contributions

R.D.T., W.S. and J.J.G. conceived and supervised the project. A.R.P and L.G. designed the experiments and prepared the manuscript. S.C. carried out EDX analysis and atomic-resolution HAADF-STEM imaging. X.T., H.A.T., W.Z., H.L. and S.C.S. performed DFT modelling and analysis. A.H. synthesized the nanoparticles. B.S. and N.M.B. carried out EXAFS and XANES analysis. J.W. performed ETEM experiments. B.K.M. helped with the in situ ETEM analysis. P.B.O’M. and T.M.B. were involved in the electrochemistry experiments. D.L.H. advised on the synthesis of the nanoparticles. All authors contributed to and commented on this paper.

Corresponding authors

Correspondence to Sean C. Smith, J. Justin Gooding, Wolfgang Schuhmann or Richard D. Tilley.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Ovidiu Ersen, Jiye Fang, Wenyue Guo, Ulrike Krewer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–19, Notes 1 and 2, and Tables 1–7.

Supplementary Video 1

In situ TEM recording of a Pt island spreading into single Pt atoms on Ru.

Supplementary Data 1

Atomic coordinates for single Pt atom on Ru and adsorbed intermediates.

Supplementary Data 2

Atomic coordinates for Pt island on Ru and adsorbed intermediates.

Supplementary Data 3

Atomic coordinates for PtRu and adsorbed intermediates.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poerwoprajitno, A.R., Gloag, L., Watt, J. et al. A single-Pt-atom-on-Ru-nanoparticle electrocatalyst for CO-resilient methanol oxidation. Nat Catal 5, 231–237 (2022). https://doi.org/10.1038/s41929-022-00756-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00756-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing