Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Critical role of solvent-modulated hydrogen-binding strength in the catalytic hydrogenation of benzaldehyde on palladium

Abstract

Solvents not only disperse reactants to enhance mass transport in catalytic reactions but also alter the reaction kinetically. Here, we show that the rate of benzaldehyde hydrogenation on palladium differs by up to one order of magnitude in different solvents (dioxane < tetrahydrofuran < water < methanol). However, the reaction pathway does not change; the majority of turnovers occurs by stepwise addition of sorbed hydrogen to sorbed benzaldehyde, first to the carbonyl oxygen and then to the carbon atom of the formyl group, forming benzyl alcohol. An analysis of the solvation energies shows that both ground and transition states are destabilized by the solvents compared to those at the gas–solid interface. The destabilization extent of the reacting organic substrates in both states are similar and, therefore, compensate each other, making the net kinetic effects inconsequential. Instead, the marked reactivity differences arise only from the differences in the solvation of sorbed hydrogen.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of catalytic cycle for benzaldehyde hydrogenation.
Fig. 2: Deuterated products in the hydrogenation of benzaldehyde.
Fig. 3: Standard free energy profile of the benzaldehyde hydrogenation.
Fig. 4: Dependence of reaction barrier on sorbed hydrogen or sorbed benzaldehyde.

Similar content being viewed by others

Data availability

All data are available within the paper and its Supplementary Information files or from the corresponding authors upon request.

References

  1. Magano, J. & Dunetz, J. R. Large-scale carbonyl reductions in the pharmaceutical industry. Org. Process Res. Dev. 16, 1156–1184 (2012).

    Article  CAS  Google Scholar 

  2. Bychko, I. B., Abakumov, A. A., Lemesh, N. V. & Strizhak, P. E. Catalytic activity of multiwalled carbon nanotubes in acetylene hydrogenation. ChemCatChem 9, 4470–4474 (2017).

    Article  CAS  Google Scholar 

  3. Song, S. et al. Heterostructured Ni/NiO composite as a robust catalyst for the hydrogenation of levulinic acid to γ-valerolactone. Appl. Catal. B 217, 115–124 (2017).

    Article  CAS  Google Scholar 

  4. Saadi, A., Rassoul, Z. & Bettahar, M. M. Gas phase hydrogenation of benzaldehyde over supported copper catalysts. J. Mol. Catal. A 164, 205–216 (2000).

    Article  CAS  Google Scholar 

  5. Sitthisa, S., Sooknoi, T., Ma, Y., Balbuena, P. B. & Resasco, D. E. Kinetics and mechanism of hydrogenation of furfural on Cu/SiO2 catalysts. J. Catal. 277, 1–13 (2011).

    Article  CAS  Google Scholar 

  6. Mäki-Arvela, P., Hájek, J., Salmi, T. & Murzin, D. Y. Chemoselective hydrogenation of carbonyl compounds over heterogeneous catalysts. Appl. Catal. A 292, 1–49 (2005).

    Article  Google Scholar 

  7. Takenouchi, M., Kudoh, S., Miyajima, K. & Mafune, F. Adsorption and desorption of hydrogen by gas-phase palladium clusters revealed by in situ thermal desorption spectroscopy. J. Phys. Chem. A 119, 6766–6772 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Schennach, R., Eichler, A. & Rendulic, K. Adsorption and desorption of methanol on Pd(111) and on a Pd/V surface alloy. J. Phys. Chem. B 107, 2552–2558 (2003).

    Article  CAS  Google Scholar 

  9. Pang, S. H., Román, A. M. & Medlin, J. W. Adsorption orientation-induced selectivity control of reactions of benzyl alcohol on Pd(111). J. Phys. Chem. C 116, 13654–13660 (2012).

    Article  CAS  Google Scholar 

  10. Wan, H., Vitter, A., Chaudhari, R. V. & Subramaniam, B. Kinetic investigations of unusual solvent effects during Ru/C catalyzed hydrogenation of model oxygenates. J. Catal. 309, 174–184 (2014).

    Article  CAS  Google Scholar 

  11. Rajadhyaksha, R. & Karwa, S. Solvent effects in catalytic hydrogenation. Chem. Eng. Sci. 41, 1765–1770 (1986).

    Article  CAS  Google Scholar 

  12. Bertero, N. M., Trasarti, A. F., Apesteguía, C. R. & Marchi, A. J. Solvent effect in the liquid-phase hydrogenation of acetophenone over Ni/SiO2: a comprehensive study of the phenomenon. Appl. Catal. A 394, 228–238 (2011).

    Article  CAS  Google Scholar 

  13. Aramendia, M. A. et al. Reduction of acetophenones over Pd/AlPO4 catalysts. Linear free energy relationship (LFER). J. Catal. 140, 335–343 (1993).

    Article  CAS  Google Scholar 

  14. Koppel, I. & Palm, V. The influence of the solvent on organic reactivity. in Advances in Linear Free Energy Relationships (eds. Chapman, N. B. & Shorter, J.) 203-280 (Springer, 1972).

  15. Xia, H. et al. Tunable selectivity of phenol hydrogenation to cyclohexane or cyclohexanol by a solvent-driven effect over a bifunctional Pd/NaY catalyst. Catal. Sci. Technol. 11, 1881–1887 (2021).

    Article  CAS  Google Scholar 

  16. Herrerias, C. I., Yao, X., Li, Z. & Li, C.-J. Reactions of C−H bonds in water. Chem. Rev. 107, 2546–2562 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Butler, R. N. & Coyne, A. G. Water: nature’s reaction enforcer· comparative effects for organic synthesis “in-water” and “on-water”. Chem. Rev. 110, 6302–6337 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Akpa, B. S. et al. Solvent effects in the hydrogenation of 2-butanone. J. Catal. 289, 30–41 (2012).

    Article  CAS  Google Scholar 

  19. Singh, U. K. & Vannice, M. A. Kinetics of liquid-phase hydrogenation reactions over supported metal catalysts—a review. Appl. Catal. A 213, 1–24 (2001).

    Article  CAS  Google Scholar 

  20. Hibbitts, D. D., Loveless, B. T., Neurock, M. & Iglesia, E. Mechanistic role of water on the rate and selectivity of Fischer–Tropsch synthesis on ruthenium catalysts. Angew. Chem. Int. Ed. 52, 12273–12278 (2013).

    Article  CAS  Google Scholar 

  21. Wagner, F. T. & Moylan, T. E. Generation of surface hydronium from water and hydrogen coadsorbed on Pt(111). Surf. Sci. 206, 187–202 (1988).

    Article  CAS  Google Scholar 

  22. Hensley, A. J. R., Bray, J., Shangguan, J., Chin, Y.-H. C. & McEwen, J.-S. Catalytic consequences of hydrogen addition events and solvent–adsorbate interactions during guaiacol–H2 reactions at the H2O–Ru(0001) Interface. J. Catal. 395, 467–482 (2020).

    Article  Google Scholar 

  23. Shangguan, J. et al. The role of protons and hydrides in the catalytic hydrogenolysis of guaiacol at the ruthenium nanoparticle–water interface. ACS Catal. 10, 12310–12332 (2020).

    Article  CAS  Google Scholar 

  24. Mayer, J. M., Hrovat, D. A., Thomas, J. L. & Borden, W. T. Proton-coupled electron transfer versus hydrogen atom transfer in benzyl/toluene, methoxyl/methanol, and phenoxyl/phenol self-exchange reactions. J. Am. Chem. Soc. 124, 11142–11147 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Shangguan, J. & Chin, Y.-H. C. Kinetic significance of proton–electron transfer during condensed phase reduction of carbonyls on transition metal clusters. ACS Catal. 9, 1763–1778 (2019).

    Article  CAS  Google Scholar 

  26. Koh, K. et al. Electrochemically tunable proton‐coupled electron transfer in Pd‐catalyzed benzaldehyde hydrogenation. Angew. Chem. Int. Ed. 59, 1501–1505 (2020).

    Article  CAS  Google Scholar 

  27. Scognamiglio, J., Jones, L., Vitale, D., Letizia, C. & Api, A. Fragrance material review on benzyl alcohol. Food Chem. Toxicol. 50, S140–S160 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Blaser, H., Jalett, H. & Wiehl, J. Enantioselective hydrogenation of α-ketoesters with cinchona-modified platinum catalysts: effect of acidic and basic solvents and additives. J. Mol. Catal. 68, 215–222 (1991).

    Article  CAS  Google Scholar 

  29. Rautanen, P. A., Aittamaa, J. R. & Krause, A. O. I. Solvent effect in liquid-phase hydrogenation of toluene. Ind. Eng. Chem. Res. 39, 4032–4039 (2000).

    Article  CAS  Google Scholar 

  30. Claus, P. Selective hydrogenation of ά,β-unsaturated aldehydes and other C=O and C=C bonds containing compounds. Top. Catal. 5, 51–62 (1998).

    Article  CAS  Google Scholar 

  31. Hub, S., Hilaire, L. & Touroude, R. Hydrogenation of but-1-yne and but-1-ene on palladium catalysts: particle size effect. Appl. Catal. 36, 307–322 (1988).

    Article  CAS  Google Scholar 

  32. Neri, G., Musolino, M. G., Milone, C., Pietropaolo, D. & Galvagno, S. Particle size effect in the catalytic hydrogenation of 2,4-dinitrotoluene over Pd/C catalysts. Appl. Catal. A 208, 307–316 (2001).

    Article  CAS  Google Scholar 

  33. Haffad, D., Kameswari, U., Bettahar, M. M., Chambellan, A. & Lavalley, J. C. Reduction of benzaldehyde on metal oxides. J. Catal. 172, 85–92 (1997).

    Article  CAS  Google Scholar 

  34. Zhou, Y., Liu, J., Li, X., Pan, X. & Bao, X. Selectivity modulation in the consecutive hydrogenation of benzaldehyde via functionalization of carbon nanotubes. J. Nat. Gas Chem. 21, 241–245 (2012).

    Article  CAS  Google Scholar 

  35. Masson, J., Cividino, P. & Court, J. Selective hydrogenation of acetophenone on chromium promoted Raney nickel catalysts. III. The influence of the nature of the solvent. Appl. Catal. A 161, 191–197 (1997).

    Article  CAS  Google Scholar 

  36. Mukherjee, S. & Vannice, M. A. Solvent effects in liquid-phase reactions: I. Activity and selectivity during citral hydrogenation on Pt/SiO2 and evaluation of mass transfer effects. J. Catal. 243, 108–130 (2006).

    Article  CAS  Google Scholar 

  37. Song, Y. et al. Hydrogenation of benzaldehyde via electrocatalysis and thermal catalysis on carbon-supported metals. J. Catal. 359, 68–75 (2018).

    Article  CAS  Google Scholar 

  38. Wu, Z. & Chin, Y.-H.C. Catalytic pathways and mechanistic consequences of water during vapor phase hydrogenation of butanal on Ru/SiO2. J. Catal. 394, 429–443 (2020).

    Article  Google Scholar 

  39. Wu, P. et al. Formation of PdO on Au–Pd bimetallic catalysts and the effect on benzyl alcohol oxidation. J. Catal. 375, 32–43 (2019).

    Article  CAS  Google Scholar 

  40. Verma, A. M. & Kishore, N. Molecular simulations of palladium catalysed hydrodeoxygenation of 2-hydroxybenzaldehyde using density functional theory. Phys. Chem. Chem. Phys. 19, 25582–25597 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Kizhakevariam, N. & Stuve, E. M. Coadsorption of water and hydrogen on Pt(100): formation of adsorbed hydronium ions. Surf. Sci. 275, 223–236 (1992).

    Article  CAS  Google Scholar 

  42. Zhao, Z. et al. Solvent-mediated charge separation drives alternative hydrogenation path of furanics in liquid water. Nat. Catal. 2, 431–436 (2019).

    Article  CAS  Google Scholar 

  43. Wang, J., Lv, C.-Q., Liu, J.-H., Ren, R.-R. & Wang, G.-C. Theoretical investigation of solvent effects on the selective hydrogenation of furfural over Pt(111). Int. J. Hydrogen Energy 46, 1592–1604 (2021).

    Article  CAS  Google Scholar 

  44. Purwanto, Deshpande, R. M., Chaudhari, R. V. & Delmas, H. Solubility of hydrogen, carbon monoxide, and 1-octene in various solvents and solvent mixtures. J. Chem. Eng. Data 41, 1414–1417 (1996).

    Article  CAS  Google Scholar 

  45. Brunner, E. Solubility of hydrogen in 10 organic solvents at 298.15, 323.15, and 373.15 K. J. Chem. Eng. Data 30, 269–273 (1985).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

G.C. is grateful to the Chinese Scholarship Council for the financial support. J.A.L. and O.Y.G. acknowledge the support by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences and Biosciences (Transdisciplinary Approaches to Realize Novel Catalytic Pathways to Energy Carriers, FWP 47319). Y.-H.(C.)C. acknowledges support from the Alexander von Humboldt Foundation which enabled the interaction in this research. We further thank F.-X. Hecht for technical support concerning the construction of the experimental set-up.

Author information

Authors and Affiliations

Authors

Contributions

G.C. carried out the reactions and performed the characterizations for selected materials. A.J. and O.Y.G. cooperated with the discussion and provided valuable suggestions. Y.-H.(C.)C. planned the kinetic experiments and analysed the rate data. Y.L. and J.A.L. supervised the work and provided guidance throughout the project. All the coauthors contributed to the discussion and helped to revise the manuscript.

Corresponding authors

Correspondence to Yue Liu, Ya-Huei (Cathy) Chin or Johannes A. Lercher.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Raghunath Chaudhari, Guichang Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Figs. 1–16, Notes 1–4 and Tables 1–5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, G., Jentys, A., Gutiérrez, O.Y. et al. Critical role of solvent-modulated hydrogen-binding strength in the catalytic hydrogenation of benzaldehyde on palladium. Nat Catal 4, 976–985 (2021). https://doi.org/10.1038/s41929-021-00701-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00701-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing