Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cobalt-catalysed enantioselective C(sp3)–C(sp3) coupling

Abstract

Enantioselective C(sp3)–C(sp3) coupling substantially impacts organic synthesis but remains challenging. Cobalt has played an important role in the development of homogeneous organometallic catalysis, but there are few examples of its use in asymmetric cross-coupling. Here we report a cobalt-catalysed enantioselective C(sp3)–C(sp3) coupling reaction, namely, alkene hydroalkylation, to access chiral fluoroalkanes. This reaction represents a catalyst-controlled enantioselective coupling mode in which a tailor-made auxiliary is unnecessary; via this reaction, an aliphatic C–F stereogenic centre can be introduced at the desired position in an alkyl chain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transition-metal-hydride-catalysed enantioselective C(sp3)–C(sp3) coupling and our strategy.
Fig. 2: Scope of alkyl halides in hydroalkylation.
Fig. 3: Scope of monofluoroalkenes in hydroalkylation.
Fig. 4: Preliminary mechanism studies.
Fig. 5: DFT calculations and proposed mechanism.
Fig. 6: Defluorinative hydroalkylation.

Similar content being viewed by others

Data availability

Data supporting the findings of this study are available within the article and Supplementary Information files. The experimental procedures, characterization of the compounds and DFT calculations are available in the Supplementary Information. Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2055682 (4aa), 2088231 (4fa), and 2088232 (4la). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. All other data are available from the authors upon reasonable request.

References

  1. Geist, E., Kirschning, A. & Schmidt, T. sp3sp3 coupling reactions in the synthesis of natural products and biologically active molecules. Nat. Prod. Rep. 31, 441–448 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Boström, J., Brown, D. G., Young, R. J. & Keserü, G. M. Expanding the medicinal chemistry synthetic toolbox. Nat. Rev. Drug Discov. 17, 709–727 (2018).

    Article  PubMed  CAS  Google Scholar 

  4. Cherney, A. H., Kadunce, N. T. & Reisman, S. E. Enantioselective and enantiospecific transition-metal-catalyzed cross-coupling reactions of organometallic reagents to construct C–C bonds. Chem. Rev. 115, 9587–9652 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Choi, J. & Fu, G. C. Transition metal-catalyzed alkyl–alkyl bond formation: another dimension in cross-coupling chemistry. Science 356, eaaf7230 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Tasker, S. Z., Standley, E. A. & Jamison, T. F. Recent advances in homogeneous nickel catalysis. Nature 509, 299–309 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yin, H. & Fu, G. C. Mechanistic investigation of enantioconvergent Kumada reactions of racemic α-bromoketones catalyzed by a nickel/bis(oxazoline) complex. J. Am. Chem. Soc. 141, 15433–15440 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fu, G. C. Transition-metal catalysis of nucleophilic substitution reactions: a radical alternative to SN1 and SN2 processes. ACS Cent. Sci. 3, 692–700 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schwarzwalder, G. M., Matier, C. D. & Fu, G. C. Enantioconvergent cross-couplings of alkyl electrophiles: the catalytic asymmetric synthesis of organosilanes. Angew. Chem. Int. Ed. 58, 3571–3574 (2019).

    Article  CAS  Google Scholar 

  10. Liang, Y. & Fu, G. C. Stereoconvergent Negishi arylations of racemic secondary alkyl electrophiles: differentiating between a CF3 and an alkyl group. J. Am. Chem. Soc. 137, 9523–9526 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lu, Z., Wilsily, A. & Fu, G. C. Stereoconvergent amine-directed alkyl–alkyl Suzuki reactions of unactivated secondary alkyl chlorides. J. Am. Chem. Soc. 133, 8154–8157 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huo, H., Gorsline, B. J. & Fu, G. C. Catalyst-controlled doubly enantioconvergent coupling of racemic alkyl nucleophiles and electrophiles. Science 367, 559–564 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kadunce, N. T. & Reisman, S. E. Nickel-catalyzed asymmetric reductive cross-coupling between heteroaryl iodides and α-chloronitriles. J. Am. Chem. Soc. 137, 10480–10483 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schmidt, J., Choi, J., Liu, A. T., Slusarczyk, M. & Fu, G. C. A general, modular method for the catalytic asymmetric synthesis of alkylboronate esters. Science 354, 1265–1269 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, X.-X., Lu, X., Li, Y., Wang, J.-W. & Fu, Y. Recent advances in nickel-catalyzed reductive hydroalkylation and hydroarylation of electronically unbiased alkenes. Sci. China Chem. 63, 1586–1600 (2020).

    Article  CAS  Google Scholar 

  16. Lu, X. et al. Practical carbon–carbon bond formation from olefins through nickel-catalyzed reductive olefin hydrocarbonation. Nat. Commun. 7, 11129 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Lu, X., Xiao, B., Liu, L. & Fu, Y. Formation of C(sp3)–C(sp3) bonds through nickel-catalyzed decarboxylative olefin hydroalkylation reactions. Chem. Eur. J. 22, 11161–11164 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, Z., Yin, H. & Fu, G. C. Catalytic enantioconvergent coupling of secondary and tertiary electrophiles with olefins. Nature 563, 379–383 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhou, F., Zhang, Y., Xu, X. & Zhu, S. NiH-catalyzed remote asymmetric hydroalkylation of alkenes with racemic α-bromo amides. Angew. Chem. Int. Ed. 58, 1754–1758 (2019).

    Article  CAS  Google Scholar 

  20. He, S.-J. et al. Nickel-catalyzed enantioconvergent reductive hydroalkylation of olefins with α-heteroatom phosphorus or sulfur alkyl electrophiles. J. Am. Chem. Soc. 142, 214–221 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Miki, Y., Hirano, K., Satoh, T. & Miura, M. Copper-catalyzed intermolecular regioselective hydroamination of styrenes with polymethylhydrosiloxane and hydroxylamines. Angew. Chem. Int. Ed. 52, 10830–10834 (2013).

    Article  CAS  Google Scholar 

  22. Shi, S.-L., Wong, Z. L. & Buchwald, S. L. Copper-catalysed enantioselective stereodivergent synthesis of amino alcohols. Nature 532, 353–356 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, Y.-M., Bruno, N. C., Placeres, Á. L., Zhu, S. & Buchwald, S. L. Enantioselective synthesis of carbo- and heterocycles through a CuH-catalyzed hydroalkylation approach. J. Am. Chem. Soc. 137, 10524–10527 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu, R. Y. & Buchwald, S. L. CuH-catalyzed olefin functionalization: from hydroamination to carbonyl addition. Acc. Chem. Res. 53, 1229–1243 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bera, S., Mao, R. & Hu, X. Enantioselective C(sp3)–C(sp3) cross-coupling of non-activated alkyl electrophiles via nickel hydride catalysis. Nat. Chem. 13, 270–277 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Wang, J.-W. et al. Catalytic asymmetric reductive hydroalkylation of enamides and enecarbamates to chiral aliphatic amines. Nat. Commun. 12, 1313 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. He, Y., Liu, C., Yu, L. & Zhu, S. Enantio- and regioselective NiH-catalyzed reductive hydroarylation of vinylarenes with aryl iodides. Angew. Chem. Int. Ed. 59, 21530–21534 (2020).

    Article  CAS  Google Scholar 

  28. Qian, D., Bera, S. & Hu, X. Chiral alkyl amine synthesis via catalytic enantioselective hydroalkylation of enecarbamates. J. Am. Chem. Soc. 143, 1959–1967 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Shi, L., Xing, L.-L., Hu, W.-B. & Shu, W. Regio- and enantioselective Ni-catalyzed formal hydroalkylation, hydrobenzylation, and hydropropargylation of acrylamides to α-tertiary amides. Angew. Chem. Int. Ed. 60, 1599–1604 (2021).

    Article  CAS  Google Scholar 

  30. Wang, X.-X. et al. NiH-catalyzed reductive hydrocarbonation of enol esters and ethers. CCS Chem. 3, 727–737 (2021).

    Article  Google Scholar 

  31. Hapke, M. & Hilt, G. in Cobalt Catalysis in Organic Synthesis (eds Hapke, M. & Hilt, G.) 1–23 (Wiley-VCH, 2020).

  32. Hammann, J. M., Hofmayer, M. S., Lutter, F. H., Thomas, L. & Knochel, P. Recent advances in cobalt-catalyzed Csp2 and Csp3 cross-couplings. Synthesis 49, 3887–3894 (2017).

    Article  CAS  Google Scholar 

  33. Rérat, A. & Gosmini, C. Grignard reagents and cobalt. Phys. Sci. Rev. 3, 20160021 (2018).

    Google Scholar 

  34. Dorval, C. & Gosmini, C. in Cobalt Catalysis in Organic Synthesis (eds Hapke, M. & Hilt, G.) 163–205 (Wiley-VCH, 2020).

  35. Pellissier, H. Recent developments in enantioselective cobalt-catalyzed transformations. Coord. Chem. Rev. 360, 122–168 (2018).

    Article  CAS  Google Scholar 

  36. Pellissier, H. in Cobalt Catalysis in Organic Synthesis (eds Hapke, M. & Hilt, G.) 337–416 (Wiley-VCH, 2020).

  37. Mao, J. et al. Cobalt–bisoxazoline-catalyzed asymmetric Kumada cross-coupling of racemic α-bromo esters with aryl Grignard reagents. J. Am. Chem. Soc. 136, 17662–17668 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Ni, C. & Hu, J. The unique fluorine effects in organic reactions: recent facts and insights into fluoroalkylations. Chem. Soc. Rev. 45, 5441–5454 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Moschner, J. et al. Approaches to obtaining fluorinated α-amino acids. Chem. Rev. 119, 10718–10801 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Sladojevich, F., Arlow, S. I., Tang, P. & Ritter, T. Late-stage deoxyfluorination of alcohols with phenofluor. J. Am. Chem. Soc. 135, 2470–2473 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. He, Y., Yang, Z., Thornbury, R. T. & Toste, F. D. Palladium-catalyzed enantioselective 1,1-fluoroarylation of aminoalkenes. J. Am. Chem. Soc. 137, 12207–12210 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jiang, X. & Gandelman, M. Enantioselective Suzuki cross-couplings of unactivated 1-fluoro-1-haloalkanes: synthesis of chiral β-, γ-, δ-, and ε-fluoroalkanes. J. Am. Chem. Soc. 137, 2542–2547 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Yang, X., Wu, T., Phipps, R. J. & Toste, F. D. Advances in catalytic enantioselective fluorination, mono-, di-, and trifluoromethylation, and trifluoromethylthiolation reactions. Chem. Rev. 115, 826–870 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Nielsen, M. K., Ahneman, D. T., Riera, O. & Doyle, A. G. Deoxyfluorination with sulfonyl fluorides: navigating reaction space with machine learning. J. Am. Chem. Soc. 140, 5004–5008 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Zhu, Y. et al. Modern approaches for asymmetric construction of carbon–fluorine quaternary stereogenic centers: synthetic challenges and pharmaceutical needs. Chem. Rev. 118, 3887–3964 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu, J., Yuan, Q., Toste, F. D. & Sigman, M. S. Enantioselective construction of remote tertiary carbon–fluorine bonds. Nat. Chem. 11, 710–715 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Huang, W., Wan, X. & Shen, Q. Cobalt-catalyzed asymmetric cross-coupling reaction of fluorinated secondary benzyl bromides with lithium aryl boronates/ZnBr2. Org. Lett. 22, 4327–4332 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Cox, D. G., Gurusamy, N. & Burton, D. J. Surprising stereochemical control of Wittig olefination involving reaction of fluorine-containing phosphoranium salt and aldehydes. J. Am. Chem. Soc. 107, 2811–2812 (1985).

    Article  CAS  Google Scholar 

  49. Koh, M. J., Nguyen, T. T., Zhang, H., Schrock, R. R. & Hoveyda, A. H. Direct synthesis of Z-alkenyl halides through catalytic cross-metathesis. Nature 531, 459–465 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jiang, X., Sakthivel, S., Kulbitski, K., Nisnevich, G. & Gandelman, M. Efficient synthesis of secondary alkyl fluorides via Suzuki cross-coupling reaction of 1-halo-1-fluoroalkanes. J. Am. Chem. Soc. 136, 9548–9551 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Abad, J.-L., Villorbina, G., Fabriàs, G. & Camps, F. Synthesis of fluorinated analogs of myristic acid as potential inhibitors of Egyptian armyworm (Spodoptera littorialis) Δ11 desaturasedesaturase. Lipids 38, 865–871 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Waser, J. & Carreira, E. M. Convenient synthesis of alkylhydrazides by the cobalt-catalyzed hydrohydrazination reaction of olefins and azodicarboxylates. J. Am. Chem. Soc. 126, 5676–5677 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Crossley, S. W., Obradors, C., Martinez, R. M. & Shenvi, R. A. Mn-, Fe-, and Co-catalyzed radical hydrofunctionalizations of olefins. Chem. Rev. 116, 8912–9000 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ai, W., Zhong, R., Liu, X. & Liu, Q. Hydride transfer reactions catalyzed by cobalt complexes. Chem. Rev. 119, 2876–2953 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Biswas, S. & Weix, D. J. Mechanism and selectivity in nickel-catalyzed cross-electrophile coupling of aryl halides with alkyl halides. J. Am. Chem. Soc. 135, 16192–16197 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schley, N. D. & Fu, G. C. Nickel-catalyzed Negishi arylations of propargylic bromides: a mechanistic investigation. J. Am. Chem. Soc. 136, 16588–16593 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lu, X. et al. Nickel-catalyzed allylic defluorinative alkylation of trifluoromethyl alkenes with reductive decarboxylation of redox-active esters. Chem. Sci. 10, 809–814 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Lu, X. et al. Nickel-catalyzed defluorinative reductive cross-coupling of gem-difluoroalkenes with unactivated secondary and tertiary alkyl halides. J. Am. Chem. Soc. 139, 12632–12637 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support from the National Natural Science Foundation of China (grant numbers 21732006, 51821006 and 51961135104 for Y.F. and grant number 21927814 for X.L.) and the USTC Research Funds of the Double First-Class Initiative (grant number YD3530002002 for X.L.) is acknowledged. We thank L. Yu (HMFL) and C.L. Tian (USTC) for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

X.L. and Y.F. directed the project and wrote the manuscript with input from all other authors. Y.F. directed and W.N. performed the DFT calculations. Under the guidance of X.L., Y.L. developed the methods, and Y.L. and J.-W.W. designed and performed the synthetic and mechanistic experiments with the help of Z.C. All the authors participated in the discussion and preparation of the manuscript.

Corresponding authors

Correspondence to Xi Lu or Yao Fu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Corinne Gosmini and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Figs. 1–37, Tables 1–8, discussion and references.

Supplementary Data 1

Crystallographic data of compound 4aa.

Supplementary Data 2

Crystallographic data of compound 4fa.

Supplementary Data 3

Crystallographic data of compound 4la.

Supplementary Data 4

DFT coordinates for optimized structures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Nie, W., Chang, Z. et al. Cobalt-catalysed enantioselective C(sp3)–C(sp3) coupling. Nat Catal 4, 901–911 (2021). https://doi.org/10.1038/s41929-021-00688-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00688-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing