Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enantioselective C–C cross-coupling of unactivated alkenes

Abstract

Metal-catalysed cross-coupling has played a central role in modern chemical synthesis for decades. Unactivated alkenes, including light olefins, are manufactured on enormous scale in the petroleum industry and represent ideal starting materials for the preparation of pharmaceuticals, agrochemicals and materials. However, enantioselective cross-coupling of unactivated alkenes remains a challenging and long-standing goal. Here we report a highly enantio- and regioselective three-component cross-coupling of unactivated alkenes with aryl (or alkenyl) triflates and organometallics (or reductant) to construct diverse C sp3 stereocentres by nickel catalysis. Specifically, selective carbonickelation and in situ trapping with nucleophiles enable efficient hydrofunctionalization and dicarbofunctionalization of unactivated alkenes in a directing group-free manner. Nickel catalysts bearing bulky C2-symmetric chiral N-heterocyclic carbene ligands were crucial for attaining high reactivity and selectivity. This strategy offers a general, modular and divergent platform for rapidly upgrading feedstock alkenes to various value-added molecules and is expected to inspire the development of other challenging enantioselective alkene cross-couplings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The importance of enantioselective olefin cross-coupling reactions.
Fig. 2: Substrate scope of hydrocarbofunctionalization reactions.
Fig. 3: Substrate scope of dicarbofunctionalization reactions.
Fig. 4: Synthetic applications and light alkene cross-couplings.
Fig. 5: Mechanistic studies.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the article and its Supplementary Information. Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition number 2223535 (7d). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures.

References

  1. Meijere, A. D., Bräse, S. & Oestreich, M. (eds) Metal-Catalyzed Cross-Coupling Reactions and More (Wiley-VCH, 2014).

  2. Jana, R., Pathak, T. P. & Sigman, M. S. Advances in transition metal (Pd,Ni,Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. Chem. Rev. 111, 1417–1492 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Johansson Seechurn, C. C., Kitching, M. O., Colacot, T. J. & Snieckus, V. Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 Nobel Prize. Angew. Chem. Int. Ed. 51, 5062–5085 (2012).

    Article  CAS  Google Scholar 

  4. Cherney, A. H., Kadunce, N. T. & Reisman, S. E. Enantioselective and enantiospecific transition-metal-catalyzed cross-coupling reactions of organometallic reagents to construct C–C bonds. Chem. Rev. 115, 9587–9652 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhao, S. et al. Enantiodivergent Pd-catalyzed C–C bond formation enabled through ligand parameterization. Science 362, 670–674 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bonet, A., Odachowski, M., Leonori, D., Essafi, S. & Aggarwal, V. K. Enantiospecific sp2sp3 coupling of secondary and tertiary boronic esters. Nat. Chem. 6, 584–589 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Choi, J. & Fu, G. C. Transition-metal-catalyzed alkyl–alkyl bond formation: another dimension in cross-coupling chemistry. Science 356, 7230–7237 (2017).

    Article  Google Scholar 

  8. Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Geilen, F. M. A., Stochniol, G., Peitz, S. & Schulte-Koerne, E. in Ullmann’s Encyclopedia of Industrial Chemistry (eds Obenaus, F. et al.) 1–13 (Wiley, 2014).

  10. Grela, K. Olefin Metathesis: Theory and Practice (Wiley, 2014).

  11. Davarnejad, R. Alkenes–Recent Advances, New Perspectives and Applications (Intechopen, 2021).

  12. Qi, X. & Diao, T. Nickel-catalyzed dicarbofunctionalization of alkenes. ACS Catal. 10, 8542–8556 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhu, S., Zhao, X., Li, H. & Chu, L. Catalytic three-component dicarbofunctionalization reactions involving radical capture by nickel. Chem. Soc. Rev. 50, 10836–10856 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Sun, X. Y., Yao, B. Y., Xuan, B., Xiao, L. J. & Zhou, Q.-L. Recent advances in nickel-catalyzed asymmetric hydrofunctionalization of alkenes. Chem. Catal. 2, 3140–3162 (2022).

    Article  CAS  Google Scholar 

  15. Zhang, L. et al. Catalytic conjunctive cross-coupling enabled by metal-induced metallate rearrangement. Science 351, 70–74 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wu, L. et al. Asymmetric Cu-catalyzed intermolecular trifluoromethylarylation of styrenes: enantioselective arylation of benzylic radicals. J. Am. Chem. Soc. 139, 2904–2907 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Wei, X., Shu, W., García-Domínguez, A., Merino & Nevado, E. C. Asymmetric Ni-catalyzed radical-relayed reductive coupling. J. Am. Chem. Soc. 142, 13515–13522 (2020).

  18. Dong, X.-Y. et al. Copper-catalyzed asymmetric radical 1,2-carboalkynylation of alkenes with alkyl halides and terminal alkynes. J. Am. Chem. Soc. 142, 9501–9509 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Xi, Y. et al. Catalytic asymmetric diarylation of internal acyclic styrenes and enamides. J. Am. Chem. Soc. 144, 8389–8398 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Liu, C. F. et al. Synthesis of tri-and tetrasubstituted stereocentres by nickel-catalysed enantioselective olefin cross-couplings. Nat. Catal. 5, 934–942 (2022).

    Article  CAS  Google Scholar 

  21. Wang, Z., Yin, H. & Fu, G. C. Catalytic enantioconvergent coupling of secondary and tertiary electrophiles with olefins. Nature 563, 379–383 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mei, T. S., Patel, H. H. & Sigman, M. S. Enantioselective construction of remote quaternary stereocentres. Nature 508, 340–344 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mlynarski, S., Schuster, C. & Morken, J. Asymmetric synthesis from terminal alkenes by cascades of diboration and cross-coupling. Nature 505, 386–390 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, W., Ding, C. & Yin, G. Catalyst-controlled enantioselective 1,1-arylboration of unactivated olefins. Nat. Catal. 3, 951–958 (2020).

    Article  CAS  Google Scholar 

  25. Stradiotto, M. & Lundgren, R. J. Ligand Design in Metal Chemistry: Reactivity and Catalysis (Wiley, 2016).

  26. Giri, R. & Kc, S. Strategies toward dicarbofunctionalization of unactivated olefins by combined Heck carbometalation and cross-coupling. J. Org. Chem. 83, 3013–3022 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Coombs, J. R. & Morken, J. P. Catalytic enantioselective functionalization of unactivated terminal alkenes. Angew. Chem. Int. Ed. 55, 2636–2649 (2016).

    Article  CAS  Google Scholar 

  28. Janssen‐Müller, D., Sahoo, B., Sun, S. Z. & Martin, R. Tackling remote sp3 C–H functionalization via Ni-catalyzed ‘chain-walking’ reactions. Isr. J. Chem. 60, 195–206 (2020).

    Article  Google Scholar 

  29. Wang, Z. X., Bai, X. Y. & Li, B. J. Metal-catalyzed substrate-directed enantioselective functionalization of unactivated alkenes. Chin. J. Chem. 37, 1174–1180 (2019).

    Article  CAS  Google Scholar 

  30. Wang, H. et al. Palladium-catalyzed amide-directed enantioselective hydrocarbofunctionalization of unactivated alkenes using a chiral monodentate oxazoline ligand. J. Am. Chem. Soc. 140, 3542–3546 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Apolinar, O. et al. Three-component asymmetric Ni-catalyzed 1,2-dicarbofunctionalization of unactivated alkenes via stereoselective migratory insertion. J. Am. Chem. Soc. 144, 19337–19343 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Tu, H. Y. et al. Enantioselective three-component fluoroalkylarylation of unactivated olefins through nickel-catalyzed cross-electrophile coupling. J. Am. Chem. Soc. 142, 9604–9611 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Teng, S. & Zhou, J. S. Metal-catalyzed asymmetric heteroarylation of alkenes: diverse activation mechanisms. Chem. Soc. Rev. 51, 1592–1607 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Ping, Y., Li, Y., Zhu, J. & Kong, W. Construction of quaternary stereocenters by palladium-catalyzed carbopalladation-initiated cascade reactions. Angew. Chem. Int. Ed. 58, 1562–1573 (2019).

    Article  CAS  Google Scholar 

  35. Liu, C. F., Luo, X., Wang, H. & Koh, M. J. Catalytic regioselective olefin hydroarylation (alkenylation) by sequential carbonickelation–hydride transfer. J. Am. Chem. Soc. 143, 9498–9506 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Wang, H., Liu, C. F., Martin, R. T., Gutierrez, O. & Koh, M. J. Directing-group-free catalytic dicarbofunctionalization of unactivated alkenes. Nat. Chem. 14, 188–195 (2022).

    Article  PubMed  Google Scholar 

  37. Janssen-Müller, D., Schlepphorst, C. & Glorius, F. Privileged chiral N-heterocyclic carbene ligands for asymmetric transition-metal catalysis. Chem. Soc. Rev. 46, 4845–4854 (2017).

    Article  PubMed  Google Scholar 

  38. Wang, Z.-C., Xie, P.-P., Xu, Y., Hong, X. & Shi, S.-L. Low-temperature nickel-catalysed C−N cross-coupling via kinetic resolution enabled by a bulky and flexible chiral N-heterocyclic carbene ligand. Angew. Chem. Int. Ed. 60, 16077–16084 (2021).

  39. Shen, D., Xu, Y. & Shi, S.-L. A bulky chiral N-heterocyclic carbene palladium catalyst enables highly enantioselective Suzuki–Miyaura cross-coupling reactions for the synthesis of biaryl atropisomers. J. Am. Chem. Soc. 141, 14938–14945 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Ruan, L.-X., Sun, B., Liu, J.-M. & Shi, S.-L. Dynamic kinetic asymmetric arylation and alkenylation of ketones. Science 379, 662–670 (2023).

    Article  CAS  PubMed  Google Scholar 

  41. Cai, Y. et al. Copper-catalyzed enantioselective Markovnikov protoboration of α-olefins enabled by a buttressed N-heterocyclic carbene ligand. Angew. Chem. Int. Ed. 57, 1376–1380 (2018).

    Article  CAS  Google Scholar 

  42. Zhang, W.-B., Yang, X.-T., Ma, J.-B., Su, Z.-M. & Shi, S.-L. Regio-and enantioselective C–H cyclization of pyridines with alkenes enabled by a nickel/N-heterocyclic carbene catalysis. J. Am. Chem. Soc. 141, 5628–5634 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Ma, J.-B., Zhao, X., Zhang, D. & Shi, S.-L. Enantio- and regioselective Ni-catalyzed para-C–H alkylation of pyridines with styrenes via intermolecular hydroarylation. J. Am. Chem. Soc. 144, 13643–13651 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Beletskaya, I. P. & Cheprakov, A. V. The Heck reaction as a sharpening stone of palladium catalysis. Chem. Rev. 100, 3009–3066 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Song, G., Wylie, N. O. W. & Hou, Z. Enantioselective C–H bond addition of pyridines to alkenes catalyzed by chiral half-sandwich rare-earth complexes. J. Am. Chem. Soc. 136, 12209–12212 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Sun, X., Lin, E. Z. & Li, B. J. Iridium-catalyzed branch-selective and enantioselective hydroalkenylation of α-olefins through C–H cleavage of enamides. J. Am. Chem. Soc. 144, 17351–17358 (2022).

  47. Gao, P., Chen, L. A. & Brown, M. K. Nickel-catalyzed stereoselective diarylation of alkenylarenes. J. Am. Chem. Soc. 140, 10653–10657 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Meroueh, S. O. Compounds and methods for treating cancer by inhibiting the urokinase receptor. US patent 20150051247A1 (2015).

  49. Stoit, A. et al. Preparation of spirocyclic amine derivatives for use as S1P modulators. WO patent 2012004378A1 (2012).

  50. Chinta, R. R. et al. Total synthesis of S-(+)-curcuphenol, S-(+)-curcuquinone and S-(+)-curcuhydroquinone. Asian J. Org. Chem. 28, 771–778 (2016).

  51. Sasata, Y., Yanai, M. & Yamamoto, S. Polymerizable liquid-crystal compound having optically active 1-alkylethylene or 1-oxo-2-alkylethylene bonding group for display device. JP patent 2005023019A (2005).

Download references

Acknowledgements

Financial support was provided by the National Key R&D Program of China (2022YFA1503702 and 2021YFF0701600), the National Natural Science Foundation of China (22325110, 92256303, 22171280 and 21821002), the Program of Shanghai Academic Research Leader (22XD1424900), the CAS Youth Interdisciplinary Team (JCTD-2021-11), the Ningbo Natural Science Foundation (2022J017, S.-L.S.) and the Ministry of Education of Singapore Academic Research Fund Tier 2: A-8000034-00-00 (M.J.K.).

Author information

Authors and Affiliations

Authors

Contributions

Z.-C.W., X.L., J.-W.Z. and C.-F.L. developed the catalytic method and conducted mechanistic studies. S.-L.S. and M.J.K. conceived the project and directed the investigations. S.-L.S. and Z.-C.W. wrote the paper with input from the other authors.

Corresponding authors

Correspondence to Ming Joo Koh or Shi-Liang Shi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Naoto Chatani and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–7, Methods, NMR spectra, HPLC traces and References.

Supplementary Data 1

Cif file of crystal structure for compound 7d.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ZC., Luo, X., Zhang, JW. et al. Enantioselective C–C cross-coupling of unactivated alkenes. Nat Catal 6, 1087–1097 (2023). https://doi.org/10.1038/s41929-023-01037-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-01037-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing