Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Engineering the Cu/Mo2CTx (MXene) interface to drive CO2 hydrogenation to methanol

Abstract

Development of efficient catalysts for the direct hydrogenation of CO2 to methanol is essential for the valorization of this abundant feedstock. Here we show that a silica-supported Cu/Mo2CTx (MXene) catalyst achieves a higher intrinsic methanol formation rate per mass Cu than the reference Cu/SiO2 catalyst with a similar Cu loading. The Cu/Mo2CTx interface can be engineered due to the higher affinity of Cu for the partially reduced MXene surface (in preference to the SiO2 surface) and the mobility of Cu under H2 at 500 °C. With increasing reduction time, the Cu/Mo2CTx interface becomes more Lewis acidic due to the higher amount of Cu+ sites dispersed onto the reduced Mo2CTx and this correlates with an increased rate of CO2 hydrogenation to methanol. The critical role of the interface between Cu and Mo2CTx is further highlighted by density functional theory calculations that identify formate and methoxy species as stable reaction intermediates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis, characterization and activity of Cu/Mo2CTx/SiO2.
Fig. 2: Characterization and DFT models of the catalysts.
Fig. 3: Characterization and evolution of reactive intermediates.
Fig. 4: DFT-computed energy profiles.

Similar content being viewed by others

Data availability

All data are available from the authors on reasonable request. Calculated DFT structures and energies are freely available at https://doi.org/10.19061/iochem-bd-6-100 (ref. 67).

References

  1. Goeppert, A., Czaun, M., Jones, J.-P., Surya Prakash, G. K. & Olah, G. A. Recycling of carbon dioxide to methanol and derived products—closing the loop. Chem. Soc. Rev. 43, 7995–8048 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Olah, G. A. Beyond oil and gas: the methanol economy. Angew. Chem. Int. Ed. Engl. 44, 2636–2639 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Behrens, M. et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 336, 893–897 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Lunkenbein, T., Schumann, J., Behrens, M., Schl”gl, R. & Willinger, M. G. Formation of a ZnO overlayer in industrial Cu/ZnO/Al2O3 catalysts induced by strong metal-support interactions. Angew. Chem. Int. Ed. 54, 4544–4548 (2015).

    Article  CAS  Google Scholar 

  5. Lee, J. S., Lee, K. H., Lee, S. Y. & Kim, Y. G. A comparative study of methanol synthesis from CO2/H2 and CO/H2 over a Cu/ZnO/Al2O3 catalyst. J. Catal. 144, 414–424 (1993).

    Article  CAS  Google Scholar 

  6. Kattel, S., Ramírez, P. J., Chen, J. G., Rodriguez, J. A. & Liu, P. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science 355, 1296–1299 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Martin, O. & Pérez-Ramírez, J. New and revisited insights into the promotion of methanol synthesis catalysts by CO2. Catal. Sci. Technol. 3, 3343–3352 (2013).

    Article  CAS  Google Scholar 

  8. Rozovskii, A. Y. & Lin, G. I. Fundamentals of methanol synthesis and decomposition. Top. Catal. 22, 137–150 (2003).

    Article  CAS  Google Scholar 

  9. Zhang, Y., Sun, Q., Deng, J., Wu, D. & Chen, S. A high activity Cu/ZnO/Al2O3 catalyst for methanol synthesis: preparation and catalytic properties. Appl. Catal. A 158, 105–120 (1997).

    Article  CAS  Google Scholar 

  10. Klier, K., Chatikavanij, V., Herman, R. G. & Simmons, G. W. Catalytic synthesis of methanol from CO/H2 IV. The effects of carbon dioxide. J. Catal. 74, 343–360 (1982).

    Article  CAS  Google Scholar 

  11. Ruland, H. et al. CO2 hydrogenation with Cu/ZnO/Al2O3: a benchmark study. ChemCatChem 12, 3216–3222 (2020).

    Article  CAS  Google Scholar 

  12. Lam, E. et al. Isolated Zr surface sites on silica promote hydrogenation of CO2 to CH3OH in supported Cu catalysts. J. Am. Chem. Soc. 140, 10530–10535 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Larmier, K. et al. CO2-to-methanol hydrogenation on zirconia-supported copper nanoparticles: reaction intermediates and the role of the metal-support interface. Angew. Chem. Int. Ed. 56, 2318–2323 (2017).

    Article  CAS  Google Scholar 

  14. Kattel, S., Yan, B., Yang, Y., Chen, J. G. & Liu, P. Optimizing binding energies of key intermediates for CO2 hydrogenation to methanol over oxide-supported copper. J. Am. Chem. Soc. 138, 12440–12450 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Noh, G. et al. Selective hydrogenation of CO2 to CH3OH on supported Cu nanoparticles promoted by isolated TiIV surface sites on SiO2. ChemSusChem 12, 968–972 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Graciani, J. et al. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science 345, 546–550 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Lam, E. et al. CO2 hydrogenation on Cu/Al2O3: role of the metal/support interface in driving activity and selectivity of a bifunctional catalyst. Angew. Chem. Int. Ed. 58, 13989–13996 (2019).

    Article  CAS  Google Scholar 

  18. Studt, F. et al. The mechanism of CO and CO2 hydrogenation to methanol over Cu-based catalysts. ChemCatChem 7, 1105–1111 (2015).

    Article  CAS  Google Scholar 

  19. Docherty, S. R. & Copéret, C. Deciphering metal–oxide and metal–metal interplay via surface organometallic chemistry: a case study with CO2 hydrogenation to methanol. J. Am. Chem. Soc. 143, 6767–6780 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Yao, S. et al. Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction. Science 357, 389–393 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Lin, L. et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 544, 80–83 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Dong, J., Fu, Q., Jiang, Z., Mei, B. & Bao, X. Carbide-supported Au catalysts for water–gas shift reactions: a new territory for the strong metal–support interaction effect. J. Am. Chem. Soc. 140, 13808–13816 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, X. et al. Highly dispersed copper over β-Mo2C as an efficient and stable catalyst for the reverse water gas shift (RWGS) reaction. ACS Catal. 7, 912–918 (2017).

    Article  CAS  Google Scholar 

  24. Posada-Pérez, S. et al. The conversion of CO2 to methanol on orthorhombic β-Mo2C and Cu/β-Mo2C catalysts: mechanism for admetal induced change in the selectivity and activity. Catal. Sci. Technol. 6, 6766–6777 (2016).

    Article  CAS  Google Scholar 

  25. Anasori, B., Lukatskaya, M. R. & Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017).

    Article  CAS  Google Scholar 

  26. Sarycheva, A. et al. 2D titanium carbide (MXene) for wireless communication. Sci. Adv. 4, eaau0920 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Naguib, M. et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Deeva, E. B. et al. In situ XANES/XRD study of the structural stability of two-dimensional molybdenum carbide Mo2CTx implications for the catalytic activity in the water-gas shift reaction. Chem. Mater. 31, 4505–4513 (2019).

    Article  CAS  Google Scholar 

  29. Diao, J. et al. Ti3C2Tx MXene catalyzed ethylbenzene dehydrogenation: active sites and mechanism exploration from both experimental and theoretical aspects. ACS Catal. 8, 10051–10057 (2018).

    Article  CAS  Google Scholar 

  30. Kurlov, A. et al. Exploiting two-dimensional morphology of molybdenum oxycarbide to enable efficient catalytic dry reforming of methane. Nat. Commun. 11, 4920 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li, Z. et al. Reactive metal–support interactions at moderate temperature in two-dimensional niobium-carbide-supported platinum catalysts. Nat. Catal. 1, 349–355 (2018).

    Article  CAS  Google Scholar 

  32. Li, Z. et al. Two-dimensional transition metal carbides as supports for tuning the chemistry of catalytic nanoparticles. Nat. Commun. 9, 5258 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lang, Z. et al. MXene surface terminations enable strong metal–support interactions for efficient methanol oxidation on palladium. ACS Appl. Mater. Interfaces 12, 2400–2406 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Zhao, D. et al. MXene (Ti3C2) vacancy-confined single-atom catalyst for efficient functionalization of CO2. J. Am. Chem. Soc. 141, 4086–4093 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Morales-García, Á., Fernández-Fernández, A., Viñes, F. & Illas, F. CO2 abatement using two-dimensional MXene carbides. J. Mater. Chem. A 6, 3381–3385 (2018).

    Article  Google Scholar 

  36. Copéret, C. et al. Surface organometallic and coordination chemistry toward single-site heterogeneous catalysts: strategies, methods, structures, and activities. Chem. Rev. 116, 323–421 (2016).

    Article  PubMed  CAS  Google Scholar 

  37. Fedorov, A., Liu, H.-J., Lo, H.-K. & Copéret, C. Silica-supported Cu nanoparticle catalysts for alkyne semihydrogenation: effect of ligands on rates and selectivity. J. Am. Chem. Soc. 138, 16502–16507 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, J. et al. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 1, 985–992 (2018).

    Article  CAS  Google Scholar 

  39. Lauritsen, J. V. et al. Location and coordination of promoter atoms in Co- and Ni-promoted MoS2-based hydrotreating catalysts. J. Catal. 249, 220–233 (2007).

    Article  CAS  Google Scholar 

  40. Zhu, G. et al. Enhanced CO2 electroreduction on armchair graphene nanoribbons edge-decorated with copper. Nano Res. 10, 1641–1650 (2017).

    Article  CAS  Google Scholar 

  41. Ro, I. et al. Role of the Cu-ZrO2 interfacial sites for conversion of ethanol to ethyl acetate and synthesis of methanol from CO2 and H2. ACS Catal. 6, 7040–7050 (2016).

    Article  CAS  Google Scholar 

  42. Halim, J. et al. Synthesis and characterization of 2D molybdenum carbide (MXene). Adv. Funct. Mater. 26, 3118–3127 (2016).

    Article  CAS  Google Scholar 

  43. Cramer, S. P., Eccles, T. K., Kutzler, F. W., Hodgson, K. O. & Mortenson, L. E. Molybdenum X-ray absorption edge spectra. The chemical state of molybdenum in nitrogenase. J. Am. Chem. Soc. 98, 1287–1288 (1976).

    Article  CAS  PubMed  Google Scholar 

  44. Chen, A. et al. Structure of the catalytically active copper–ceria interfacial perimeter. Nat. Catal. 2, 334–341 (2019).

    Article  CAS  Google Scholar 

  45. Newton, M. A. et al. Unwanted effects of X-rays in surface grafted copper(II) organometallics and copper exchanged zeolites, how they manifest, and what can be done about them. Phys. Chem. Chem. Phys. 22, 6826–6837 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Frenkel, A. I. Solving the structure of nanoparticles by multiple-scattering EXAFS analysis. J. Synchrotron Radiat. 6, 293–295 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. de Jong, K. P., Geus, J. W. & Joziasse, J. An infrared spectroscopic study of the adsorption of carbon monoxide on silica-supported copper particles. Appl. Surf. Sci. 6, 273–287 (1980).

    Article  CAS  Google Scholar 

  48. Smith, M. L., Kumar, N. & Spivey, J. J. CO adsorption behavior of Cu/SiO2, Co/SiO2, and CuCo/SiO2 catalysts studied by in situ DRIFTS. J. Phys. Chem. C 116, 7931–7939 (2012).

    Article  CAS  Google Scholar 

  49. Subramanian, N. D. et al. A DRIFTS study of CO adsorption and hydrogenation on Cu-based core–shell nanoparticles. Catal. Sci. Technol. 2, 621–631 (2012).

    Article  CAS  Google Scholar 

  50. Cox, D. F. & Schulz, K. H. Interaction of CO with Cu+ cations: CO adsorption on Cu2O(100). Surf. Sci. 249, 138–148 (1991).

    Article  CAS  Google Scholar 

  51. Fisher, I. A. & Bell, A. T. In situ infrared study of methanol synthesis from H2/CO over Cu/SiO2 and Cu/ZrO2/SiO2. J. Catal. 178, 153–173 (1998).

    Article  CAS  Google Scholar 

  52. Wellendorff, J. et al. Density functionals for surface science: exchange-correlation model development with Bayesian error estimation. Phys. Rev. B 85, 235149 (2012).

    Article  CAS  Google Scholar 

  53. Baiker, A., Kilo, M., Maciejewski, M., Menzi, S. & Wokaun, A. in Studies in Surface Science and Catalysis Vol. 75 (eds Guczi, L. et al.) 1257–1272 (Elsevier, 1993).

  54. Fehr, S. M. & Krossing, I. Spectroscopic signatures of pressurized carbon dioxide in diffuse reflectance infrared spectroscopy of heterogeneous catalysts. ChemCatChem 12, 2622–2629 (2020).

    Article  CAS  Google Scholar 

  55. Quan, J. et al. Vibration-driven reaction of CO2 on Cu surfaces via Eley–Rideal-type mechanism. Nat. Chem. 11, 722–729 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Baxter, R. & Hu, P. Insight into why the Langmuir–Hinshelwood mechanism is generally preferred. J. Chem. Phys. 116, 4379–4381 (2002).

    Article  CAS  Google Scholar 

  57. Cossu, G., Rossi, A., Arcifa, A. & Spencer, N. D. Development and application of a cost-effective transfer cell for X-ray photoelectron spectroscopy. In Proc. Incontro di Spettroscopia Analitica ISA, Cagliari (2018).

  58. Clark, A. H., Imbao, J., Frahm, R. & Nachtegaal, M. ProQEXAFS: a highly optimized parallelized rapid processing software for QEXAFS data. J. Synchrotron Radiat. 27, 551–557 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Fung, B. M., Khitrin, A. K. & Ermolaev, K. An improved broadband decoupling sequence for liquid crystals and solids. J. Magn. Reson. 142, 97–101 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Tsoukalou, A. et al. Structural evolution and dynamics of an In2O3 catalyst for CO2 hydrogenation to methanol: an operando XAS-XRD and in situ TEM study. J. Am. Chem. Soc. 141, 13497–13505 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  63. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  CAS  Google Scholar 

  64. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  65. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  66. Jonsson, H., Mills, G. & Jacobsen, K. in Classical and Quantum Dynamics in Condensed Phase Simulations (ed. Berne, B. J.) 385–404 (Singapore World Scientific, 1998).

  67. Alvarez-Moreno, M. et al. Managing the computational chemistry big data problem: the ioChem-BD platform. J. Chem. Inf. Model. 55, 95–103 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the European Union’s Horizon 2020 research and innovation programme (grant no. 800419 to H.Z.), Eidgenössische Technische Hochschule (ETH) Zürich (grant no. ETH-40 17-2 to Z.C.), Spanish Ministerio de Innovación y Universidades (grant no. PRE2019-089647 to A.V.L.), InnoSuisse-SCCER Heat and Electricity Storage (grant no. KTI 1155002545 to E.L.), ETH Zürich (grant no. ETH-44 16-2 to A.T.), European Research Council (grant no. 819573 to E.W.), ETH Postdoctoral Fellowship Program and the Marie Curie Actions for People COFUND (grant no. 18-1 FEL 51 to D.M.), Spanish MEC and the European Social Fund (grant no. RyC-2016-19930 to A.C.-V.) and Spanish Ministerio de Innovación y Universidades (grant no. PGC2018-100818-A-I00 to A.C.-V.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. The authors thank ScopeM (ETH Zürich) for the use of their electron microscopy facilities and the Laboratory of Surface Science and Technology (ETH Zürich) for the use of their XPS facilities. We also thank PSI SuperXAS for beamtime and O. Safonova for assistance.

Author information

Authors and Affiliations

Authors

Contributions

A.F. conceived the research project. H.Z. planned the experimental work. Z.C., H.Z. and D.A.K. prepared the MXene-based supports. H.Z. and E.L. prepared the Cu grafted materials. H.Z. prepared, characterized and tested the catalysts and analysed the data. E.L. and D.M. performed the solid-state NMR experiments. A.T. and E.W. performed the XPS and high-resolution transmission electron microscopy imaging, respectively. A.K. and F.D. performed the ICP analysis. Z.C. and P.M.A. performed the XAS experiments. P.M.A. supervised the XAS experiments. A.V.L., E.D.L. and A.C.-V. designed and performed the DFT calculations. A.C.-V. supervised the DFT calculations. C.C., A.F. and C.R.M. coordinated the research. Data were discussed among all coauthors. H.Z. and A.F. wrote the paper with contributions from all authors.

Corresponding authors

Correspondence to Aleix Comas-Vives, Christophe Copéret, Alexey Fedorov or Christoph R. Müller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Karin Föttinger and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–57, Tables 1–10 and rRefs. 1–20.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Chen, Z., López, A.V. et al. Engineering the Cu/Mo2CTx (MXene) interface to drive CO2 hydrogenation to methanol. Nat Catal 4, 860–871 (2021). https://doi.org/10.1038/s41929-021-00684-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00684-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing