Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Development of a practical non-noble metal catalyst for hydrogenation of N-heteroarenes

Abstract

Due to their availability, price and biological relevance, the use of catalysts based on 3d transition metals is of substantial importance for the synthesis of industrial chemicals, but also for organic synthesis in general. Hence in recent years, especially in homogeneous catalysis, the use of such Earth-abundant, biocompatible metals has become a major area of interest. However, to achieve reactivity comparable to that of noble-metal catalysts, generally sophisticated ligands—typically expensive phosphorus derivatives—have to be used. Here, we report the chemoselective reduction of quinolines and related N-heterocycles by molecular hydrogen, using a simple Mn(i) complex [Mn(CO)5Br]. Under very mild reaction conditions this catalytic system is able to reduce a wide range of quinolines, affording high yields of the corresponding tetrahydroquinolines, a scaffold present in many bioactive compounds, including marketed pharmaceuticals. Mechanistic studies reveal the formation of the active catalyst and also show the important role of a concomitantly formed Mn(ii) species and HBr for the hydrogenation of the heterocyclic substrates.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Mn complexes.
Fig. 2: Development of quinoline hydrogenation catalysts.
Fig. 3: Screening of catalysts for the hydrogenation of quinoline 1a.
Fig. 4: Scope of substrates.
Fig. 5: Chemoselective hydrogenation of quinolines and other N-heterocycle hydrogenations.
Fig. 6: Mechanistic investigations.
Fig. 7: Proposed mechanism.

Data availability

CCDC 1922866 (Mn-2), 1922867 (Mn-3), 1941549 (Mn-4) and 1941550 (2u) (Supplementary Fig. 1) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Further data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Zecchina, A. & Califano, S. The Development of Catalysis: A History of Key Processes and Personas in Catalytic Science and Technology (Wiley, 2017).

  2. 2.

    Pignolet, L. H. Homogeneous Catalysis with Metal Phosphine Complexes (Springer, 1983).

  3. 3.

    Klein Gebbink, R. J. M. & Moret, M.-E. Non-Noble Metal Catalysis: Molecular Approaches and Reactions (Wiley, 2019).

  4. 4.

    Chirik, P. & Morris, R. Getting down to earth: the renaissance of catalysis with abundant metals. Acc. Chem. Res. 48, 2495–2495 (2015).

    CAS  PubMed  Google Scholar 

  5. 5.

    Study on the Review of the List of Critical Raw Materials (European Commission, 2017).

  6. 6.

    Hayler, J. D., Leahy, D. K. & Simmons, E. M. A pharmaceutical industry perspective on sustainable metal catalysis. Organometallics 38, 36–46 (2019).

    CAS  Google Scholar 

  7. 7.

    Bullock, R. M. Abundant metals give precious hydrogenation performance. Science 342, 1054–1055 (2013).

    CAS  PubMed  Google Scholar 

  8. 8.

    Zimmerman, J. B. & Anastas, P. T. The periodic table of the elements of green and sustainable chemistry. Green Chem. https://doi.org/10.1039/C9GC01293A (2019).

    CAS  Google Scholar 

  9. 9.

    Zell, T. & Milstein, D. Hydrogenation and dehydrogenation iron pincer catalysts capable of metal–ligand cooperation by aromatization/dearomatization. Acc. Chem. Res. 48, 1979–1994 (2015).

    CAS  PubMed  Google Scholar 

  10. 10.

    Werkmeister, S., Neumann, J., Junge, K. & Beller, M. Pincer-type complexes for catalytic (de)hydrogenation and transfer (de)hydrogenation reactions: recent progress. Chem. Eur. J. 21, 12226–12250 (2015).

    CAS  PubMed  Google Scholar 

  11. 11.

    Junge, K., Papa, V. & Beller, M. Cobalt–pincer complexes in catalysis. Chem. Eur. J. 25, 122–143 (2019).

    CAS  PubMed  Google Scholar 

  12. 12.

    Liu, W., Sahoo, B., Junge, K. & Beller, M. Cobalt complexes as an emerging class of catalysts for homogeneous hydrogenations. Acc. Chem. Res. 51, 1858–1869 (2018).

    CAS  PubMed  Google Scholar 

  13. 13.

    Vasudevan, K. V., Scott, B. L. & Hanson, S. K. Alkene hydrogenation catalyzed by nickel hydride complexes of an aliphatic pnp pincer ligand. Eur. J. Inorg. Chem. 2012, 4898–4906 (2012).

    CAS  Google Scholar 

  14. 14.

    Watari, R., Kayaki, Y., Hirano, S.-i, Matsumoto, N. & Ikariya, T. Hydrogenation of carbon dioxide to formate catalyzed by a copper/1,8-diazabicyclo[5.4.0]undec-7-ene system. Adv. Synth. Catal. 357, 1369–1373 (2015).

    CAS  Google Scholar 

  15. 15.

    Jochmann, P. & Stephan, D. W. H2 cleavage, hydride formation, and catalytic hydrogenation of imines with zinc complexes of C5Me5 and N-heterocyclic carbenes. Angew. Chem. Int. Ed. 52, 9831–9835 (2013).

    CAS  Google Scholar 

  16. 16.

    Filonenko, G. A., van Putten, R., Hensen, E. J. M. & Pidko, E. A. Catalytic (de)hydrogenation promoted by non-precious metals – Co, Fe and Mn: recent advances in an emerging field. Chem. Soc. Rev. 47, 1459–1483 (2018).

    CAS  PubMed  Google Scholar 

  17. 17.

    Martinez-Finley, E. J., Chakraborty, S. & Aschner, M. in Encyclopedia of Metalloproteins (eds Kretsinger, R. H., Uversky, V. N. & Permyakov, E. A.) 1297–1303 (Springer, 2013).

  18. 18.

    Pan, H. J. et al. A catalytically active [Mn]-hydrogenase incorporating a non-native metal cofactor. Nat. Chem. 11, 669–675 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Maji, B. & Barman, M. K. Recent developments of manganese complexes for catalytic hydrogenation and dehydrogenation reactions. Synthesis 49, 3377–3393 (2017).

    CAS  Google Scholar 

  20. 20.

    Mukherjee, A. & Milstein, D. Homogeneous catalysis by cobalt and manganese pincer complexes. ACS Catal. 8, 11435–11469 (2018).

    CAS  Google Scholar 

  21. 21.

    Kallmeier, F. & Kempe, R. Manganese complexes for (de)hydrogenation catalysis: a comparison to cobalt and iron catalysts. Angew. Chem. Int. Ed. 57, 46–60 (2018).

    CAS  Google Scholar 

  22. 22.

    Elangovan, S. et al. Selective catalytic hydrogenations of nitriles, ketones, and aldehydes by well-defined manganese pincer complexes. J. Am. Chem. Soc. 138, 8809–8814 (2016).

    CAS  PubMed  Google Scholar 

  23. 23.

    Freitag, F., Irrgang, T. & Kempe, R. Mechanistic studies of hydride transfer to imines from a highly active and chemoselective manganate catalyst. J. Am. Chem. Soc. 141, 11677–11685 (2019).

    CAS  PubMed  Google Scholar 

  24. 24.

    Kar, S., Goeppert, A., Kothandaraman, J. & Prakash, G. K. S. Manganese-catalyzed sequential hydrogenation of CO2 to methanol via formamide. ACS Catal. 7, 6347–6351 (2017).

    CAS  Google Scholar 

  25. 25.

    Papa, V. et al. Efficient and selective hydrogenation of amides to alcohols and amines using a well-defined manganese-PNN pincer complex. Chem. Sci. 8, 3576–3585 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Pena-Lopez, M., Piehl, P., Elangovan, S., Neumann, H. & Beller, M. Manganese-catalyzed hydrogen-autotransfer C–C bond formation: α-alkylation of ketones with primary alcohols. Angew. Chem. Int. Ed. 55, 14967–14971 (2016).

    CAS  Google Scholar 

  27. 27.

    Erken, C. et al. Manganese-catalyzed hydroboration of carbon dioxide and other challenging carbonyl groups. Nat. Commun. 9, 4521 (2018).

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Bertini, F. et al. Carbon dioxide reduction to methanol catalyzed by Mn(I) PNP pincer complexes under mild reaction conditions. ACS Catal. 9, 632–639 (2019).

    CAS  Google Scholar 

  29. 29.

    van Putten, R. et al. Non-pincer-type manganese complexes as efficient catalysts for the hydrogenation of esters. Angew. Chem. Int. Ed. 56, 7531–7534 (2017).

    Google Scholar 

  30. 30.

    Anderez-Fernandez, M. et al. A stable manganese pincer catalyst for the selective dehydrogenation of methanol. Angew. Chem. Int. Ed. 56, 559–562 (2017).

    CAS  Google Scholar 

  31. 31.

    Brzozowska, A. et al. Highly chemo- and stereoselective transfer semihydrogenation of alkynes catalyzed by a stable, well-defined manganese(II) complex. ACS Catal. 8, 4103–4109 (2018).

    CAS  Google Scholar 

  32. 32.

    Kumar, A., Janes, T., Espinosa-Jalapa, N. A. & Milstein, D. Manganese catalyzed hydrogenation of organic carbonates to methanol and alcohols. Angew. Chem. Int. Ed. 57, 12076–12080 (2018).

    CAS  Google Scholar 

  33. 33.

    Wei, D. et al. Hydrogenation of carbonyl derivatives catalysed by manganese complexes bearing bidentate pyridinyl-phosphine ligands. Adv. Synth. Catal. 360, 676–681 (2018).

    CAS  Google Scholar 

  34. 34.

    Fish, R. H., Thormodsen, A. D. & Cremer, G. A. Homogeneous catalytic hydrogenation. 1. Regiospecific reductions of polynuclear aromatic and polynuclear heteroaromatic nitrogen compounds catalyzed by transition metal carbonyl hydrides. J. Am. Chem. Soc. 104, 5234–5237 (1982).

    CAS  Google Scholar 

  35. 35.

    Ryabchuk, P. et al. Heterogeneous nickel-catalysed reversible, acceptorless dehydrogenation of N-heterocycles for hydrogen storage. Chem. Commun. 55, 4969–4972 (2019).

    CAS  Google Scholar 

  36. 36.

    Sorribes, I., Liu, L. C., Domenech-Carbo, A. & Corma, A. Nanolayered cobalt-molybdenum sulfides as highly chemo- and regioselective catalysts for the hydrogenation of quinoline derivatives. ACS Catal. 8, 4545–4557 (2018).

    CAS  Google Scholar 

  37. 37.

    Jardine, I. & McQuillin, F. J. Homogeneous hydrogenation of the -N=N-, -CH=N-, and -NO2 groupings. Chem. Commun. 626 (1970).

  38. 38.

    Dobereiner, G. E. et al. Iridium-catalyzed hydrogenation of N-heterocyclic compounds under mild conditions by an outer-sphere pathway. J. Am. Chem. Soc. 133, 7547–7562 (2011).

    CAS  PubMed  Google Scholar 

  39. 39.

    Wen, J. L., Tan, R. C., Liu, S. D., Zhao, Q. Y. & Zhang, X. M. Strong Brønsted acid promoted asymmetric hydrogenation of isoquinolines and quinolines catalyzed by a Rh–thiourea chiral phosphine complex via anion binding. Chem. Sci. 7, 3047–3051 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Wang, T. L. et al. Highly enantioselective hydrogenation of quinolines using phosphine-free chiral cationic ruthenium catalysts: scope, mechanism, and origin of enantioselectivity. J. Am. Chem. Soc. 133, 9878–9891 (2011).

    CAS  PubMed  Google Scholar 

  41. 41.

    Cai, X. F., Huang, W. X., Chen, Z. P. & Zhou, Y. G. Palladium-catalyzed asymmetric hydrogenation of 3-phthalimido substituted quinolines. Chem. Commun. 50, 9588–9590 (2014).

    CAS  Google Scholar 

  42. 42.

    Zhu, G., Pang, K. & Parkin, G. New modes for coordination of aromatic heterocyclic nitrogen compounds to molybdenum: catalytic hydrogenation of quinoline, isoquinoline, and quinoxaline by Mo(PMe3)4H4. J. Am. Chem. Soc. 130, 1564–1565 (2008).

    CAS  PubMed  Google Scholar 

  43. 43.

    Chakraborty, S., Brennessel, W. W. & Jones, W. D. A molecular iron catalyst for the acceptorless dehydrogenation and hydrogenation of N-heterocycles. J. Am. Chem. Soc. 136, 8564–8567 (2014).

    CAS  PubMed  Google Scholar 

  44. 44.

    Adam, R. et al. A general and highly selective cobalt-catalyzed hydrogenation of N-heteroarenes under mild reaction conditions. Angew. Chem. Int. Ed. 56, 3216–3220 (2017).

    CAS  Google Scholar 

  45. 45.

    Sahoo, B. et al. A robust iron catalyst for the selective hydrogenation of substituted (iso)quinolines. Chem. Sci. 9, 8134–8141 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Xu, R., Chakraborty, S., Yuan, H. & Jones, W. D. Acceptorless, reversible dehydrogenation and hydrogenation of N-heterocycles with a cobalt pincer catalyst. ACS Catal. 5, 6350–6354 (2015).

    CAS  Google Scholar 

  47. 47.

    Liu, W. P. & Ackermann, L. Manganese-catalyzed C–H activation. ACS Catal. 6, 3743–3752 (2016).

    CAS  Google Scholar 

  48. 48.

    Hammarback, L. A. et al. Mapping out the key carbon–carbon bond-forming steps in Mn-catalysed C–H functionalization. Nat. Catal. 1, 830–840 (2018).

    CAS  Google Scholar 

  49. 49.

    Wang, H., Choi, I., Rogge, T., Kaplaneris, N. & Ackermann, L. Versatile and robust C–C activation by chelation-assisted manganese catalysis. Nat. Catal. 1, 993–1001 (2018).

    CAS  Google Scholar 

  50. 50.

    Sweany, R. L. & Halpern, J. Hydrogenation of .alpha.-methylstyrene by hydridopentacarbonylmanganese (I). Evidence for a free-radical mechanism. J. Am. Chem. Soc. 99, 8335–8337 (1977).

    CAS  Google Scholar 

  51. 51.

    Treichel, P. M. in Comprehensive Organometallic Chemistry II Vol. 6 (eds Abel, E. W., Stone, F. G. A. & Wilkinson, G.) Ch. 1 (Pergamon Press, 1995).

  52. 52.

    Geier, S. J., Chase, P. A. & Stephan, D. W. Metal-free reductions of N-heterocycles via Lewis acid catalyzed hydrogenation. Chem. Commun. 46, 4884–4886 (2010).

    CAS  Google Scholar 

  53. 53.

    Van Aken, K., Strekowski, L. & Patiny, L. EcoScale, a semi-quantitative tool to select an organic preparation based on economical and ecological parameters. Beilstein J. Org. Chem. https://doi.org/10.1186/1860-5397-2-3 (2006).

Download references

Acknowledgements

We thank the analytical department (LIKAT) for their support, and the State of Mecklenburg–Western Pomerania and the Federal State of Germany (BMBF) for financial support. V.P. thanks the Ermenegildo Zegna Founder’s Scholarship for financial support and F. Balzamo for the graphical abstract. We also thank J. Rabeah (LIKAT) and R. Grauke (LIKAT) for the electron paramagnetic resonance spectra reported in the Supporting Information, W. Baumann for the variable temperature NMR spectra measured under in situ hydrogen flow, D. Formenti for the fruitful discussion and D. K. Leonard (LIKAT) for the assistance in manuscript preparation.

Author information

Affiliations

Authors

Contributions

M.B. and V.P. conceived and designed the experiments. V.P. and Y.C. performed the experiments and analysed the data. A.S. performed X-ray crystal structure analyses. K.J. participated in the discussions and supported the project. M.B. and V.P. co-wrote the paper.

Corresponding author

Correspondence to Matthias Beller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary methods, Tables 1–2, Figures 1–8, references

Compound Mn-2

Crystallographic data for compound Mn-2

Compound Mn-3

Crystallographic data for compound Mn-3

Compound Mn-4

Crystallographic data for compound Mn-4

Compound 2u

Crystallographic data for compound 2u

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Papa, V., Cao, Y., Spannenberg, A. et al. Development of a practical non-noble metal catalyst for hydrogenation of N-heteroarenes. Nat Catal 3, 135–142 (2020). https://doi.org/10.1038/s41929-019-0404-6

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing