Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure, reactivity and catalytic properties of manganese-hydride amidate complexes

Abstract

The high efficiency of widely applied Noyori-type hydrogenation catalysts arises from the N–H moiety coordinated to a metal centre, which stabilizes rate-determining transition states through hydrogen-bonding interactions. It was proposed that a higher efficiency could be achieved by substituting an N–M′ group (M′ = alkali metals) for the N–H moiety using a large excess of metal alkoxides (M′OR); however, such a metal-hydride amidate intermediate has not yet been isolated. Here we present the synthesis, isolation and reactivity of a metal-hydride amidate complex (HMn–NLi). Kinetic studies show that the rate of hydride transfer from HMn–NLi to a ketone is 24-fold higher than that of the corresponding amino metal-hydride complex (HMn–NH). Moreover, the hydrogenation of N-alkyl-substituted aldimines was realized using HMn–NLi as the active catalyst, whereas HMn–NH is much less effective. These results highlight the superiority of M/NM′ bifunctional catalysis over the classic M/NH bifunctional catalysis for hydrogenation reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Catalytic hydrogenation of polar unsaturated compounds and reaction mechanisms.
Fig. 2: Preparation and single-crystal structure of Mn-hydride amidate complex.
Fig. 3: Kinetic studies.
Fig. 4: DFT calculations.
Fig. 5: Studies on catalytic reactivities of lithium Mn-hydride amidate.
Fig. 6: Catalytic hydrogenation of aldimines and ketimines.

Similar content being viewed by others

Data availability

The crystallographic data for the structures of [Mn]-2*, [Mn]-5, [Mn]-7 and [Mn]-9 reported in this work have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under deposition numbers CCDC 2089177, 2128243, 2128247 and 2128248, respectively. The data supporting the findings of this study are available within the paper and its Supplementary Information.

References

  1. Schrock, R. R. & Osborn, J. A. Rhodium catalysts for the homogeneous hydrogenation of ketones. J. Chem. Soc. D, 567–568 (1970).

  2. Clapham, S. E., Hadzovic, A. & Morris, R. H. Mechanisms of the H2-hydrogenation and transfer hydrogenation of polar bonds catalyzed by ruthenium hydride complexes. Coord. Chem. Rev. 248, 2201–2237 (2004).

    Article  CAS  Google Scholar 

  3. Dub, P. A., Scott, B. L. & Gordon, J. C. Why does alkylation of the N–H functionality within M/NH bifunctional Noyori-type catalysts lead to turnover? J. Am. Chem. Soc. 139, 1245–1260 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Noyori, R. & Ohkuma, T. Asymmetric catalysis by architectural and functional molecular engineering: practical chemo- and stereoselective hydrogenation of ketones. Angew. Chem. Int. Ed. 40, 40–73 (2001).

    Article  CAS  Google Scholar 

  5. Ohkuma, T., Ooka, H., Hashiguchi, S., Ikariya, T. & Noyori, R. Practical enantioselective hydrogenation of aromatic ketones. J. Am. Chem. Soc. 117, 2675–2676 (1995).

    Article  CAS  Google Scholar 

  6. Doucet, H. et al. Trans-[RuCl2(phosphane)2(1,2-diamine)] and chiral trans-[RuCl2(diphosphane)(1,2-diamine)]: shelf-stable precatalysts for the rapid, productive, and stereoselective hydrogenation of ketones. Angew. Chem. Int. Ed. 37, 1703–1707 (1998).

    Article  CAS  Google Scholar 

  7. Ohkuma, T. et al. Asymmetric hydrogenation of alkenyl, cyclopropyl, and aryl ketones. RuCl2(xylbinap)(1,2-diamine) as a precatalyst exhibiting a wide scope. J. Am. Chem. Soc. 120, 13529–13530 (1998).

    Article  CAS  Google Scholar 

  8. Ohkuma, T., Ishii, D., Takeno, H. & Noyori, R. Asymmetric hydrogenation of amino ketones using chiral RuCl2(diphophine)(1,2-diamine) complexes. J. Am. Chem. Soc. 122, 6510–6511 (2000).

    Article  CAS  Google Scholar 

  9. Ohkuma, T. et al. Trans-RuH(η-BH4)(binap)(1,2-diamine): a catalyst for asymmetric hydrogenation of simple ketones under base-free conditions. J. Am. Chem. Soc. 124, 6508–6509 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Balaraman, E., Gunanathan, C., Zhang, J., Shimon, L. J. W. & Milstein, D. Efficient hydrogenation of organic carbonates, carbamates and formates indicates alternative routes to methanol based on CO2 and CO. Nat. Chem. 3, 609–614 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Xie, J.-H., Liu, X.-Y., Xie, J.-B., Wang, L.-X. & Zhou, Q.-L. An additional coordination group leads to extremely efficient chiral iridium catalysts for asymmetric hydrogenation of ketones. Angew. Chem. Int. Ed. 50, 7329–7332 (2011).

    Article  CAS  Google Scholar 

  12. Zuo, W., Lough, A. J., Li, Y. F. & Morris, R. H. Amine(imine)diphosphine iron catalysts for asymmetric transfer hydrogenation of ketones and imines. Science 342, 1080–1083 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Pan, H.-J. et al. A catalytically active [Mn]-hydrogenase incorporating a non-native metal cofactor. Nat. Chem. 11, 669–675 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ikariya, T. & Gridnev, I. D. Bifunctional transition metal-based molecular catalysts for asymmetric C–C and C–N bond formation. Chem. Rec. 9, 106–123 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Zhao, B., Han, Z. & Ding, K. The N–H Functional group in organometallic catalysis. Angew. Chem. Int. Ed. 52, 4744–4788 (2013).

    Article  CAS  Google Scholar 

  16. Khusnutdinova, J. R. & Milstein, D. Metal–ligand cooperation. Angew. Chem. Int. Ed. 54, 12236–12273 (2015).

    Article  CAS  Google Scholar 

  17. Haack, K.-J., Hashiguchi, S., Fujii, A., Ikariya, T. & Noyori, R. The catalyst precursor, catalyst, and intermediate in the RuII-promoted asymmetric hydrogen transfer between alcohols and ketones. Angew. Chem. Int. Ed. Engl. 36, 285–288 (1997).

    Article  CAS  Google Scholar 

  18. Yamakawa, M., Ito, H. & Noyori, R. The metal–ligand bifunctional catalysis: a theoretical study on the ruthenium(II)-catalyzed hydrogen transfer between alcohols and carbonyl compounds. J. Am. Chem. Soc. 122, 1466–1478 (2000).

    Article  CAS  Google Scholar 

  19. Abdur-Rashid, K., Faatz, M., Lough, A. J. & Morris, R. H. Catalytic cycle for the asymmetric hydrogenation of prochiral ketones to chiral alcohols: direct hydride and proton transfer from chiral catalysts trans-Ru(H)2(diphosphine)(diamine) to ketones and direct addition of dihydrogen to the resulting hydridoamido complexes. J. Am. Chem. Soc. 123, 7473–7474 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Abdur-Rashid, K. et al. Mechanism of the hydrogenation of ketones catalyzed by trans-dihydrido(diamine)ruthenium(II) complexes. J. Am. Chem. Soc. 124, 15104–15118 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Sandoval, C. A., Ohkuma, T., Muñiz, K. & Noyori, R. Mechanism of asymmetric hydrogenation of ketones catalyzed by BINAP/1,2-Diamine–ruthenium(II) complexes. J. Am. Chem. Soc. 125, 13490–13503 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Abbel, R. et al. A succession of isomers of ruthenium dihydride complexes. Which one is the ketone hydrogenation catalyst? J. Am. Chem. Soc. 127, 1870–1882 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Hamilton, R. J., Leong, C. G., Bigam, G., Miskolzie, M. & Bergens, S. H. A ruthenium–dihydrogen putative intermediate in ketone hydrogenation. J. Am. Chem. Soc. 127, 4152–4153 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Hamilton, R. J. & Bergens, S. H. An unexpected possible role of base in asymmetric catalytic hydrogenations of ketones. Synthesis and characterization of several key catalytic intermediates. J. Am. Chem. Soc. 128, 13700–13701 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Hamilton, R. J. & Bergens, S. H. Direct observations of the metal–ligand bifunctional addition step in an enantioselective ketone hydrogenation. J. Am. Chem. Soc. 130, 11979–11987 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Takebayashi, S., Dabral, N., Miskolzie, M. & Bergens, S. H. Experimental investigations of a partial Ru–O Bond during the metal–ligand bifunctional addition in Noyori-type enantioselective ketone hydrogenation. J. Am. Chem. Soc. 133, 9666–9669 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Dub, P. A., Henson, N. J., Martin, R. L. & Gordon, J. C. Unravelling the mechanism of the asymmetric hydrogenation of acetophenone by [RuX2(diphosphine)(1,2-diamine)] catalysts. J. Am. Chem. Soc. 136, 3505–3521 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Hasanayn, F. & Morris, R. H. Symmetry aspects of H2 splitting by five-coordinate d6 ruthenium amides, and calculations on acetophenone hydrogenation, ruthenium alkoxide formation, and subsequent hydrogenolysis in a model trans-Ru(H)2(diamine)(diphosphine) system. Inorg. Chem. 51, 10808–10818 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Dub, P. A. & Ikariya, T. Quantum chemical calculations with the inclusion of nonspecific and specific solvation: asymmetric transfer hydrogenation with bifunctional ruthenium catalysts. J. Am. Chem. Soc. 135, 2604–2619 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Dub, P. A. & Gordon, J. C. The mechanism of enantioselective ketone reduction with Noyori and Noyori–Ikariya bifunctional catalysts. Dalton Trans. 45, 6756–6781 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Dub, P. A. & Gordon, J. C. Metal–ligand bifunctional catalysis: the ‘accepted’ mechanism, the issue of concertedness, and the function of the ligand in catalytic cycles involving hydrogen atoms. ACS Catal. 7, 6635–6655 (2017).

    Article  CAS  Google Scholar 

  32. Dub, P. A. & Gordon, J. C. The role of the metal-bound N–H functionality in Noyori-type molecular catalysts. Nat. Rev. Chem. 2, 396–408 (2018).

    Article  CAS  Google Scholar 

  33. Hartmann, R. & Chen, P. Noyori’s hydrogenation catalyst needs a Lewis acid cocatalyst for high activity. Angew. Chem. Int. Ed. 40, 3581–3585 (2001).

    Article  CAS  Google Scholar 

  34. Hartmann, R. & Chen, P. Numerical modeling of differential kinetics in the asymmetric hydrogenation of acetophenone by Noyori’s catalyst. Adv. Synth. Catal. 345, 1353–1359 (2003).

    Article  CAS  Google Scholar 

  35. John, J. M., Takebayashi, S., Dabral, N., Miskolzie, M. & Bergens, S. H. Base-catalyzed bifunctional addition to amides and imides at low temperature. A new pathway for carbonyl hydrogenation. J. Am. Chem. Soc. 135, 8578–8584 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Nakane, S., Yamamura, T., Manna, S. K., Tanaka, S. & Kitamura, M. Mechanistic study of the Ru-catalyzed asymmetric hydrogenation of nonchelatable and chelatable tert-alkyl ketones using the linear tridentate sp3P/sp3NH/sp2N-combined ligand PN(H)N: RuNH- and RuNK-involved dual catalytic cycle. ACS Catal. 8, 11059–11075 (2018).

    Article  CAS  Google Scholar 

  37. Dub, P. A. Alkali metal alkoxides in Noyori-type hydrogenations. Eur. J. Inorg. Chem. 2021, 4884–4889 (2021).

    Article  CAS  Google Scholar 

  38. Liu, C., van Putten, R., Kulyaev, P. O., Filonenko, G. A. & Pidko, E. A. Computational insights into the catalytic role of the base promoters in ester hydrogenation with homogeneous non-pincer-based Mn–P,N catalyst. J. Catal. 363, 136–143 (2018).

    Article  CAS  Google Scholar 

  39. Cui, C.-X. et al. Mechanism of Ir-catalyzed hydrogenation: a theoretical view. Coord. Chem. Rev. 412, 213251 (2020).

    Article  CAS  Google Scholar 

  40. Wang, Y., Wang, M., Li, Y. & Liu, Q. Homogeneous manganese-catalyzed hydrogenation and dehydrogenation reactions. Chem 7, 1180–1223 (2021).

    Article  CAS  Google Scholar 

  41. Fu, S., Shao, Z., Wang, Y. & Liu, Q. Manganese-catalyzed upgrading of ethanol into 1-butanol. J. Am. Chem. Soc. 139, 11941–11948 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Wang, Y., Shao, Z., Zhang, K. & Liu, Q. Manganese-catalyzed dual-deoxygenative coupling of primary alcohols with 2-arylethanols. Angew. Chem. Int. Ed. 57, 15143–15147 (2018).

    Article  CAS  Google Scholar 

  43. Wang, Y. et al. Unmasking the ligand effect in manganese-catalyzed hydrogenation: mechanistic insight and catalytic application. J. Am. Chem. Soc. 141, 17337–17349 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Shao, Z. et al. Reversible interconversion between methanol-diamine and diamide for hydrogen storage based on manganese catalyzed (de)hydrogenation. Nat. Commun. 11, 591 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu, C. et al. Manganese-catalyzed asymmetric hydrogenation of quinolines enabled by ππ interaction. Angew. Chem. Int. Ed. 60, 5108–5113 (2021).

    Article  CAS  Google Scholar 

  46. Elangovan, S. et al. Efficient and selective N-alkylation of amines with alcohols catalysed by manganese pincer complexes. Nat. Commun. 7, 12641 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Nguyen, D. H. et al. Manganese pincer complexes for the base-free, acceptorless dehydrogenative coupling of alcohols to esters: development, scope, and understanding. ACS Catal. 7, 2022–2032 (2017).

    Article  CAS  Google Scholar 

  48. Choualeb, A., Lough, A. J. & Gusev, D. G. Hemilabile pincer-type hydride complexes of iridium. Organometallics 26, 5224–5229 (2007).

    Article  CAS  Google Scholar 

  49. Hadzovic, A., Song, D., MacLaughlin, C. M. & Morris, R. H. A mechanism displaying autocatalysis: the hydrogenation of acetophenone catalyzed by RuH(S-binap)(app) where app is the amido ligand derived from 2-amino-2-(2-pyridyl)propane. Organometallics 26, 5987–5999 (2007).

    Article  CAS  Google Scholar 

  50. Chakraborty, S., Brennessel, W. W. & Jones, W. D. A molecular iron catalyst for the acceptorless dehydrogenation and hydrogenation of N-heterocycles. J. Am. Chem. Soc. 136, 8564–8567 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Seo, C. S. G., Tsui, B. T. H., Gradiski, M. V., Smith, S. A. M. & Morris, R. H. Enantioselective direct, base-free hydrogenation of ketones by a manganese amido complex of a homochiral, unsymmetrical P–N–P′ ligand. Catal. Sci. Technol. 11, 3153–3163 (2021).

    Article  CAS  Google Scholar 

  52. Freitag, F., Irrgang, T. & Kempe, R. Mechanistic studies of hydride transfer to imines from a highly active and chemoselective manganate catalyst. J. Am. Chem. Soc. 141, 11677–11685 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Seo, C. S. G., Tannoux, T., Smith, S. A. M., Lough, A. J. & Morris, R. H. Enantioselective hydrogenation of activated aryl imines catalyzed by an iron(II) P–NH–P′ Complex. J. Org. Chem. 84, 12040–12049 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Lagaditis, P. O. et al. Iron(II) complexes containing unsymmetrical P–N–P′ pincer ligands for the catalytic asymmetric hydrogenation of ketones and imines. J. Am. Chem. Soc. 136, 1367–1380 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support from the National Key R&D Program of China 2021YFF0701600 (Q.L.), the National Natural Science Foundation of China 22171159 (Q.L.), 21822106 (Q.L.), the Foundation of the Department of Education of Guangdong Province 2021KTSCX140 (Q.L.) and the China Postdoctoral Science Foundation 2020M680021 (Y.W.), 2021T140366 (Y.W.) is greatly appreciated. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. We thank the National Supercomputing Center, Zhengzhou. We are very grateful to the referees for their valuable comments and suggestions that improved the quality of this paper. We thank Y. Xia and R. Jian from Tsinghua University for high-resolution mass spectroscopy analysis of [Mn]-5. We also acknowledge G. Sun from Chongqing University for helpful discussions about theoretical calculations. This paper is dedicated to Prof. Matthias Beller on occasion of his 60th birthday.

Author information

Authors and Affiliations

Authors

Contributions

Y.W. and Q.L. conceived and designed this research. Y.W. synthesized and characterized all the HMn–NM′ complexes, performed the kinetic studies, designed the catalytic reactions and optimized reaction conditions. H.Y. and H.L. helped to explore the substrate scope. S.L. and Y.L. carried out DFT calculations and discussed the manuscript. Y.W. wrote the original draft with the contribution of S.L., which was reviewed and edited by Y.L. and Q.L. Q.L. directed the project and all the authors have approved the final version of the manuscript.

Corresponding authors

Correspondence to Yu Lan or Qiang Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Pavel Dub and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–30, Tables 1–4, experimental procedures and characterization data, DFT calculation results, discussion and references.

Supplementary Data 1

x,y,z coordinates for DFT calculations.

Supplementary Data 2

Crystallographic data for compound [Mn]-2*; CCDC reference 2089177.

Supplementary Data 3

Crystallographic data for compound [Mn]-5; CCDC reference 2128243.

Supplementary Data 4

Crystallographic data for compound [Mn]-7; CCDC reference 2128247.

Supplementary Data 5

Crystallographic data for compound [Mn]-9; CCDC reference 2128248.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, S., Yang, H. et al. Structure, reactivity and catalytic properties of manganese-hydride amidate complexes. Nat. Chem. 14, 1233–1241 (2022). https://doi.org/10.1038/s41557-022-01036-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-01036-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing