Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Rational strain engineering in delafossite oxides for highly efficient hydrogen evolution catalysis in acidic media


The rational design of hydrogen evolution reaction electrocatalysts that can compete with platinum is an outstanding challenge in the process of designing viable power-to-gas technologies. Here, we introduce delafossites as a family of hydrogen evolution reaction electrocatalysts in acidic media. We show that, in PdCoO2, the inherently strained Pd metal sublattice acts as a pseudomorphic template for the growth of a tensile-strained Pd-rich capping layer under reductive conditions. The surface modification ranges up to 400 nm and continuously improves the electrocatalytic activity by simultaneously increasing the exchange current density and by reducing the Tafel slope down to 38 mV dec−1, leading to overpotentials η10 < 15 mV. The improved activity is attributed to the operando stabilization of a β-PdHx phase with enhanced surface catalytic properties with respect to pure or nanostructured palladium. These findings illustrate how operando-induced electrodissolution can be used as a top-down design concept through the strain-stabilized formation of catalytically active phases.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Crystal structure of the delafossites and the evolution of the electrochemical activity for HER.
Fig. 2: Surface modifications on the delafossites before and after electrocatalytic HER in 1 M H2SO4.
Fig. 3: XPS spectra.
Fig. 4: STEM analysis of the Pd capping layer on PdCoO2.

Data availability

The data supporting the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    CAS  PubMed  Google Scholar 

  2. 2.

    Lewis, N. S. Toward cost-effective solar energy use. Science 315, 798–801 (2007).

    CAS  PubMed  Google Scholar 

  3. 3.

    Podjaski, F., Kröger, J. & Lotsch, B. V. Toward an aqueous solar battery: direct electrochemical storage of solar energy in carbon nitrides. Adv. Mater. 30, 1705477 (2018).

    Google Scholar 

  4. 4.

    Yu, M. Z. et al. Solar-powered electrochemical energy storage: an alternative to solar fuels. J. Mater. Chem. A 4, 2766–2782 (2016).

    CAS  Google Scholar 

  5. 5.

    Gülzow, E. Alkaline fuel cells: a critical view. J. Power Sources 61, 99–104 (1996).

    Google Scholar 

  6. 6.

    Tobias, R., Nhan, N. H., Detre, T., Robert, S. & Peter, S. Electrocatalytic oxygen evolution reaction in acidic environments—reaction mechanisms and catalysts. Adv. Energy Mater. 7, 1601275 (2017).

    Google Scholar 

  7. 7.

    Carmo, M., Fritz, D. L., Mergel, J. & Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrog. Energy 38, 4901–4934 (2013).

    CAS  Google Scholar 

  8. 8.

    Vesborg, P. C. K. & Jaramillo, T. F. Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy. RSC Adv. 2, 7933–7947 (2012).

    CAS  Google Scholar 

  9. 9.

    Shao, M. Electrocatalysis in Fuel Cells (Springer, 2013).

  10. 10.

    Papageorgopoulos, D. C., Keijzer, M., Veldhuis, J. B. J. & de Bruijn, F. A. CO tolerance of Pd-rich platinum palladium carbon-supported electrocatalysts—proton exchange membrane fuel cell applications. J. Electrochem. Soc. 149, A1400–A1404 (2002).

    CAS  Google Scholar 

  11. 11.

    Mavrikakis, M., Hammer, B. & Nørskov, J. K. Effect of strain on the reactivity of metal surfaces. Phys. Rev. Lett. 81, 2819–2822 (1998).

    Google Scholar 

  12. 12.

    Kibler, L. A., El-Aziz, A. M., Hoyer, R. & Kolb, D. M. Tuning reaction rates by lateral strain in a palladium monolayer. Angew. Chem. Int. Ed. 44, 2080–2084 (2005).

    CAS  Google Scholar 

  13. 13.

    Greeley, J., Jaramillo, T. F., Bonde, J., Chorkendorff, I. & Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5, 909–913 (2006).

    CAS  PubMed  Google Scholar 

  14. 14.

    Strasser, P. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2, 454–460 (2010).

    CAS  PubMed  Google Scholar 

  15. 15.

    Du, M., Cui, L., Cao, Y. & Bard, A. J. Mechanoelectrochemical catalysis of the effect of elastic strain on a platinum nanofilm for the ORR exerted by a shape memory alloy substrate. J. Am. Chem. Soc. 137, 7397–7403 (2015).

    CAS  PubMed  Google Scholar 

  16. 16.

    Putungan, D. B., Lin, S.-H. & Kuo, J.-L. A first-principles examination of conducting monolayer 1T′-MX2 (M = Mo, W; X = S, Se, Te): promising catalysts for hydrogen evolution reaction and its enhancement by strain. Phys. Chem. Chem. Phys. 17, 21702–21708 (2015).

    CAS  PubMed  Google Scholar 

  17. 17.

    Escudero-Escribano, M. et al. Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science 352, 73–76 (2016).

    CAS  PubMed  Google Scholar 

  18. 18.

    Wang, H. et al. Direct and continuous strain control of catalysts with tunable battery electrode materials. Science 354, 1031–1036 (2016).

    CAS  PubMed  Google Scholar 

  19. 19.

    Luo, M. & Guo, S. Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2, 17059 (2017).

    CAS  Google Scholar 

  20. 20.

    Shannon, R. D., Rogers, D. B. & Prewitt, C. T. Chemistry of noble metal oxides. I. Syntheses and properties of ABO2 delafossite compounds. Inorg. Chem. 10, 713–718 (1971).

    CAS  Google Scholar 

  21. 21.

    Prewitt, C. T., Shannon, R. D. & Rogers, D. B. Chemistry of noble metal oxides. II. Crystal structures of PtCoO2, PdCoO2, CuFeO2, and AgFeO2. Inorg. Chem. 10, 719–723 (1971).

    Google Scholar 

  22. 22.

    Rogers, D. B., Shannon, R. D., Prewitt, C. T. & Gillson, J. L. Chemistry of noble metal oxides. III. Electrical transport properties and crystal chemistry of ABO2 compounds with delafossite structure. Inorg. Chem. 10, 723–727 (1971).

    Google Scholar 

  23. 23.

    Daou, R., Frésard, R., Eyert, V., Hébert, S. & Maignan, A. Unconventional aspects of electronic transport in delafossite oxides. Sci. Technol. Adv. Mater. 18, 919–938 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Ong, K. P., Singh, D. J. & Wu, P. Unusual transport and strongly anisotropic thermopower in PtCoO2 and PdCoO2. Phys. Rev. Lett. 104, 176601 (2010).

    PubMed  Google Scholar 

  25. 25.

    Moll, P. J. W., Kushwaha, P., Nandi, N., Schmidt, B. & Mackenzie, A. P. Evidence for hydrodynamic electron flow in PdCoO2. Science 351, 1061–1064 (2016).

    CAS  PubMed  Google Scholar 

  26. 26.

    Carcia, P. F., Shannon, R. D., Bierstedt, P. E. & Flippen, R. B. O2 electrocatalysis on thin-film metallic oxide electrodes with the delafossite structure. J. Electrochem. Soc. 127, 1974–1978 (1980).

    CAS  Google Scholar 

  27. 27.

    Toyoda, K., Hinogami, R., Miyata, N. & Aizawa, M. Calculated descriptors of catalytic activity for water electrolysis anode: application to delafossite oxides. J. Phys. Chem. C 119, 6495–6501 (2015).

    CAS  Google Scholar 

  28. 28.

    Gu, J. et al. p-Type CuRhO2 as a self-healing photoelectrode for water reduction under visible light. J. Am. Chem. Soc. 136, 830–833 (2014).

    CAS  PubMed  Google Scholar 

  29. 29.

    Prévot, M. S. et al. Evaluating charge carrier transport and surface states in CuFeO2 photocathodes. Chem. Mater. 29, 4952–4962 (2017).

    Google Scholar 

  30. 30.

    Varga, A., Samu, G. F. & Janáky, C. Rapid synthesis of interconnected CuCrO2 nanostructures: a promising electrode material for photoelectrochemical fuel generation. Electrochim. Acta 272, 22–32 (2018).

    CAS  Google Scholar 

  31. 31.

    Ahmed, J. & Mao, Y. B. Delafossite CuAlO2 nanoparticles with electrocatalytic activity toward oxygen and hydrogen evolution reactions. Nanomater. Sustain. Energy 1213, 57–72 (2015).

    CAS  Google Scholar 

  32. 32.

    Díaz-García, A. K., Lana-Villarreal, T. & Gómez, R. Sol–gel copper chromium delafossite thin films as stable oxide photocathodes for water splitting. J. Mater. Chem. A 3, 19683–19687 (2015).

    Google Scholar 

  33. 33.

    Park, J. E. et al. Stable hydrogen evolution from an AgRhO2 photocathode under visible light. Chem. Mater. 30, 2574–2582 (2018).

    CAS  Google Scholar 

  34. 34.

    Duncan, H. & Lasia, A. Separation of hydrogen adsorption and absorption on Pd thin films. Electrochim. Acta 53, 6845–6850 (2008).

    CAS  Google Scholar 

  35. 35.

    Tanaka, M., Hasegawa, M. & Takei, H. Crystal growth of PdCoO2, PtCoO2 and their solid-solution with delafossite structure. J. Cryst. Growth 173, 440–445 (1997).

    CAS  Google Scholar 

  36. 36.

    Morales-Guio, C. G., Stern, L.-A. & Hu, X. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 43, 6555–6569 (2014).

    CAS  PubMed  Google Scholar 

  37. 37.

    McCrory, C. C. L. et al. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137, 4347–4357 (2015).

    CAS  PubMed  Google Scholar 

  38. 38.

    Cherevko, S. et al. Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: a comparative study on activity and stability. Catal. Today 262, 170–180 (2016).

    CAS  Google Scholar 

  39. 39.

    Awaludin, Z., Safuan, M., Okajima, T. & Ohsaka, T. Investigating the physical and electrochemical effects of cathodic polarization treatment on TaOx. J. Mater. Chem. A 3, 16791–16800 (2015).

    CAS  Google Scholar 

  40. 40.

    Campari, M., Taveres, A. C. & Trasatti, S. Thermally prepared Ti/RhOx electrodes: II H2 evolution in acid solution. Hem. Ind. 56, 231–237 (2002).

    CAS  Google Scholar 

  41. 41.

    Shinagawa, T., Garcia-Esparza, A. T. & Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 5, 13801 (2015).

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Maoka, T. & Enyo, M. Overpotential decay transients and the reaction mechanism on the Pd–H2 electrode. Surf. Technol. 8, 441–450 (1979).

    CAS  Google Scholar 

  43. 43.

    Pentland, N., Bockris, J. O. & Sheldon, E. Hydrogen evolution reaction on copper, gold, molybdenum, palladium, rhodium, and iron—mechanism and measurement technique under high purity conditions. J. Electrochem. Soc. 104, 182–194 (1957).

    CAS  Google Scholar 

  44. 44.

    Searson, P. C. Hydrogen evolution and entry in palladium at high current density. Acta Metall. Mater. 39, 2519–2525 (1991).

    CAS  Google Scholar 

  45. 45.

    Elam, M. & Conway, B. E. Sorption behavior of the overpotential‐deposited H species in the cathodic H2 evolution reaction at Pd and Pt–Pd electroplated composite electrodes. J. Electrochem. Soc. 135, 1678–1685 (1988).

    CAS  Google Scholar 

  46. 46.

    Jana, R., Bhim, A., Bothra, P., Pati, S. K. & Peter, S. C. Electrochemical dealloying of PdCu3 nanoparticles to achieve Pt-like activity for the hydrogen evolution reaction. ChemSusChem 9, 2922–2927 (2016).

    CAS  PubMed  Google Scholar 

  47. 47.

    Greeley, J., Nørskov, J. K., Kibler, L. A., El-Aziz, A. M. & Kolb, D. M. Hydrogen evolution over bimetallic systems: understanding the trends. ChemPhysChem 7, 1032–1035 (2006).

    CAS  PubMed  Google Scholar 

  48. 48.

    Lin, D. & Lasia, A. Electrochemical impedance study of the kinetics of hydrogen evolution at a rough palladium electrode in acidic solution. J. Electroanal. Chem. 785, 190–195 (2017).

    CAS  Google Scholar 

  49. 49.

    Hollemann, A. F. & Wiberg, N. Lehrbuch der Anorganischen Chemie 102nd edn, 1387 (Walter de Gruyter, 2007).

  50. 50.

    Wagner, S. et al. Achieving coherent phase transition in palladium–hydrogen thin films. Scr. Mater. 64, 978–981 (2011).

    CAS  Google Scholar 

  51. 51.

    Zhang, S. & Scheu, C. Evaluation of EELS spectrum imaging data by spectral components and factors from multivariate analysis. Microscopy 67, i133–i141 (2018).

    CAS  PubMed  Google Scholar 

  52. 52.

    Arblaster, J. W. Crystallographic properties of palladium assessment of properties from absolute zero to the melting point. Platinum Met. Rev. 56, 181–189 (2012).

    CAS  Google Scholar 

  53. 53.

    Kuo, C.-H. et al. The effect of lattice strain on the catalytic properties of Pd nanocrystals. ChemSusChem 6, 1993–2000 (2013).

    CAS  PubMed  Google Scholar 

  54. 54.

    Kuhrt, C. & Anton, R. On the origin of a lattice expansion in palladium and Pd–Au vapour deposits on various substrates. Thin Solid Films 198, 301–315 (1991).

    CAS  Google Scholar 

  55. 55.

    Teranishi, T. & Miyake, M. Size control of palladium nanoparticles and their crystal structures. Chem. Mater. 10, 594–600 (1998).

    CAS  Google Scholar 

  56. 56.

    Dafft, E. G., Bohnenkamp, K. & Engell, H. J. Investigations of the electrochemical reduction of hydrogen ions on palladium electrodes. Z. Phys. Chem. 108, 33–44 (1977).

    CAS  Google Scholar 

  57. 57.

    Hammer, B. & Norskov, J. K. Why gold is the noblest of all the metals. Nature 376, 238–240 (1995).

    CAS  Google Scholar 

  58. 58.

    Nilsson, A. et al. The electronic structure effect in heterogeneous catalysis. Catal. Lett. 100, 111–114 (2005).

    CAS  Google Scholar 

  59. 59.

    Gorzkowski, M. T. & Lewera, A. Probing the limits of d-band center theory: electronic and electrocatalytic properties of Pd-shell–Pt-core nanoparticles. J. Phys. Chem. C 119, 18389–18395 (2015).

    CAS  Google Scholar 

  60. 60.

    Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    PubMed  Google Scholar 

  61. 61.

    Adit Maark, T. & Peterson, A. A. Understanding strain and ligand effects in hydrogen evolution over Pd(111) surfaces. J. Phys. Chem. C 118, 4275–4281 (2014).

    Google Scholar 

  62. 62.

    Mariano, R. G., McKelvey, K., White, H. S. & Kanan, M. W. Selective increase in CO2 electroreduction activity at grain-boundary surface terminations. Science 358, 1187–1192 (2017).

    CAS  PubMed  Google Scholar 

  63. 63.

    Hakamada, M., Nakano, H., Furukawa, T., Takahashi, M. & Mabuchi, M. Hydrogen storage properties of nanoporous palladium fabricated by dealloying. J. Phys. Chem. C 114, 868–873 (2010).

    CAS  Google Scholar 

  64. 64.

    Zhou, H.-B., Jin, S., Zhang, Y., Lu, G.-H. & Liu, F. Anisotropic strain enhanced hydrogen solubility in bcc metals: the independence on the sign of strain. Phys. Rev. Lett. 109, 135502 (2012).

    PubMed  Google Scholar 

  65. 65.

    Yang, Y. & Kumar, K. S. Elastic strain effects on the catalytic response of Pt and Pd thin films deposited on Pd–Zr metallic glass. J. Mater. Res. 32, 2690–2699 (2017).

    CAS  Google Scholar 

  66. 66.

    Wagner, S. & Pundt, A. Quasi-thermodynamic model on hydride formation in palladium–hydrogen thin films: impact of elastic and microstructural constraints. Int. J. Hydrog. Energy 41, 2727–2738 (2016).

    CAS  Google Scholar 

  67. 67.

    Baldi, A., Narayan, T. C., Koh, A. L. & Dionne, J. A. In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals. Nat. Mater. 13, 1143–1148 (2014).

    CAS  PubMed  Google Scholar 

  68. 68.

    Ulvestad, A. et al. Avalanching strain dynamics during the hydriding phase transformation in individual palladium nanoparticles. Nat. Commun. 6, 10092 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Akiba, H. et al. Nanometer-size effect on hydrogen sites in palladium lattice. J. Am. Chem. Soc. 138, 10238–10243 (2016).

    CAS  PubMed  Google Scholar 

  70. 70.

    Li, G. et al. In situ modification of a delafossite-type PdCoO2 bulk single crystal for reversible hydrogen sorption and fast hydrogen evolution. ACS Energy Lett. 4, 2185–2191 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Kikugawa, N. et al. Interplanar coupling-dependent magnetoresistivity in high-purity layered metals. Nat. Commun. 7, 10903 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Takatsu, H. et al. Roles of high-frequency optical phonons in the physical properties of the conductive delafossite PdCoO2. J. Phys. Soc. Jpn 76, 104701 (2007).

    Google Scholar 

  73. 73.

    Moulder, J. F., Stickle, W. F., Sobol, P. E. & Bomen, K. D. Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, 1992).

Download references


We gratefully acknowledge P. Schützendübe and M. Wieland for the XPS measurements, and E. Frau and P. Iyengar for the introduction to and assistance with the SECM measurements. Y. Eren Suyolcu, A. Bandarenka, N. Vargas-Barbosa, and especially R. Merkle are acknowledged for fruitful discussions. We further acknowledge C. Hohmann (NIM) for creating the figure in the table of contents. E.A.-L. acknowledges support from the SNF Ambizione Energy programme and the research programme of FOM, which is financially supported by the Netherlands Organisation for Scientific Research (NWO). S.Z. and C.S. acknowledge financial support from the German Research Foundation (DFG) under the priority programme SPP 1613 (DFG SCHE 634/12-2). B.V.L. acknowledges the Cluster of Excellence e-conversion. F.P., E.A.-L., B.V.L. and A.F.i.M. thank the MPS-EPFL Center for financial and logistic support.

Author information




F.P., D.W., F.H. and B.V.L. conceived the project and the contributing measurements. The materials were synthesized by D.W., L.D. and R.E. All sample preparation and electrochemical measurements were done by F.P. The SECM data were analysed and discussed by E.A.-L. and F.P. G.R. and F.P. analysed the XPS data. S.Z. performed the STEM experiments, including the data analysis and presentation. F.P. created all of the other graphs. F.P. and B.V.L. wrote the manuscript. All authors, including V.D., C.S. and A.F.iM. contributed to discussion of the measurements, data interpretation and manuscript preparation.

Corresponding author

Correspondence to Bettina V. Lotsch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16, Tables 1–6, Notes 1–6 and references.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Podjaski, F., Weber, D., Zhang, S. et al. Rational strain engineering in delafossite oxides for highly efficient hydrogen evolution catalysis in acidic media. Nat Catal 3, 55–63 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing