Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Solid–liquid phase transition induced electrocatalytic switching from hydrogen evolution to highly selective CO2 reduction

A Publisher Correction to this article was published on 01 April 2021

This article has been updated

Abstract

Conventional strategies for modifying electrocatalysts for efficient CO2 reduction are mainly based on doping, defect/morphology engineering, substrate design and so on. In most cases, these methods can only tune their structures, electronic states and thereby catalytic properties in a gradual way. Here we report that the solid–liquid phase transition of Ga–Sn/Ga–In alloys can induce an instant and radical transformation of their atomic and electronic structures during electrocatalysis, which dramatically impacts their catalytic properties. The transition of Sn/In active components from phase-segregated clusters to dispersed single atoms during melting results in a unique electronic structure through further reduction of both metallic Sn/In and Ga. Such atomic/electronic structure transitions can correlate well with suppression of the hydrogen evolution reaction and an enhanced formate Faradaic efficiency from <35% to >95%. This two-state switching strategy may be extended to other catalytic reactions to determine correlations between their structures and catalytic properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The impact of solid–liquid phase transition on the properties of Ga–Sn/Ga–In alloys.
Fig. 2: Electrochemical CO2 reduction with Ga–Sn alloy.
Fig. 3: In situ Sn K-edge XAS spectra of Ga–Sn alloy during CO2 electroreduction.
Fig. 4: Temperature-dependent STEM images, SAED patterns and EDS mappings of Ga–Sn alloy.
Fig. 5: Atomic and electronic structure evolutions studied by XPS and XANES fitting.
Fig. 6: Stability tests of Ga–Sn alloy for CO2 electroreduction.

Similar content being viewed by others

Data availability

The most essential electrochemical, catalytic, XAS and XPS data are shared on figshare and can be accessed via https://doi.org/10.6084/m9.figshare.13347812.v4. The rest of the data that support the plots within this paper and the other findings of this study are available from the corresponding authors upon reasonable request. The XAS data are also available from the BL14W1 beamline station at the Shanghai Synchrotron Radiation Facility. The atomic coordinate data for the ab initio molecular dynamic simulations are included in Supplementary Data 1. The videos relevant to the appearance of the liquid Ga–Sn electrode and its solid–liquid phase transitions during CO2 electroreduction are provided as Supplementary Videos 13.

Change history

References

  1. Jhong, H.-R., Ma, S. & Kenis, P. J. Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges and future opportunities. Curr. Opin. Chem. Eng. 2, 191–199 (2013).

    Article  Google Scholar 

  2. Kuhl, K. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050–7059 (2012).

    Article  CAS  Google Scholar 

  3. Ma, W. et al. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen assisted C–C coupling over fluorine modified copper. Nat. Catal. 3, 478–487 (2020).

    Article  CAS  Google Scholar 

  4. Zheng, X. et al. Theory-guided Sn/Cu alloying for efficient CO2 electroreduction at low overpotentials. Nat. Catal. 2, 55–61 (2019).

    Article  CAS  Google Scholar 

  5. Gao, S. et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuels. Nature 529, 68–72 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Yang, H. B. et al. Atomically dispersed Ni(i) at the active site for electrochemical CO2 reduction. Nat. Energy 3, 140–147 (2018).

    Article  CAS  Google Scholar 

  7. Wang, Y. et al. Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nat. Catal. 3, 98–106 (2019).

    Article  CAS  Google Scholar 

  8. Wu, Y., Jiang, Z., Liang, Y. & Wang, H. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 575, 639–642 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Wakerley, D. et al. Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nat. Mater. 18, 1222–1227 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Dinh, C.-T. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Resasco, J. et al. Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. J. Am. Chem. Soc. 139, 11277–11287 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Pan, F. & Yang, Y. Designing CO2 reduction electrode materials by morphology and interface engineering. Energy Environ. Sci. 13, 2275–2309 (2020).

    Article  CAS  Google Scholar 

  13. Bohra, D. et al. Lateral adsorbate interactions inhibit HCOO while promoting CO selectivity for CO2 electrocatalysis on silver. Angew. Chem. Int. Ed. 58, 1345–1349 (2019).

    Article  CAS  Google Scholar 

  14. Luc, W. et al. Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate. Nat. Catal. 2, 423–430 (2019).

    Article  CAS  Google Scholar 

  15. Jiao, J. et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nat. Chem. 11, 222–228 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Kim, D. et al. Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J. Am. Chem. Soc. 139, 8329–8336 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Lu, L. et al. Highly efficient electroreduction of CO2 to methanol on palladium–copper bimetallic aerogels. Angew. Chem. Int. Ed. 57, 14149–14153 (2018).

    Article  CAS  Google Scholar 

  18. Lu, Q. et al. A selective and efficient electrocatalyst for carbon dioxide reduction. Nat. Commun. 5, 3242 (2014).

    Article  PubMed  CAS  Google Scholar 

  19. Bi, W. et al. Surface immobilization of transition metal ions on nitrogen-doped graphene realizing high-efficient and selective CO2 reduction. Adv. Mater. 30, 1706617 (2018).

    Article  CAS  Google Scholar 

  20. Zhang, S., Kang, P. & Meyer, T. J. Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J. Am. Chem. Soc. 136, 1734–1737 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Li, X. et al. Exclusive Ni–N4 realize near-unity CO selectivity for electrochemical CO2 reduction. J. Am. Chem. Soc. 139, 14889–14892 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Gu, J., Hsu, C.-S., Bai, L., Chen, H. M. & Hu, X. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 364, 1091–1094 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Chen, P. et al. Phase-transformation engineering in cobalt diselenide realizing enhanced catalytic acitivity for hydrogen evolution in an alkaline medium. Adv. Mater. 28, 7527–7532 (2018).

    Article  CAS  Google Scholar 

  24. Chen, Y. et al. Ethylene selectivity in electrocatalytic CO2 reduction on Cu nanomaterials: A crystal phase-dependent study. J. Am. Chem. Soc. 142, 12760–12766 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Zhu, X. et al. Metallic nickel hydroxide nanosheets give superior electrocatalytic oxidation of urea for fuels. Angew. Chem. Int. Ed. 55, 12465–12469 (2016).

    Article  CAS  Google Scholar 

  26. Liu, H. et al. Promoting photochemical water oxidation with metallic band structure. J. Am. Chem. Soc. 138, 1527–1535 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Liu, H. et al. Correlations among structure, electronic properties and photochemical water oxidation: A case study on lithium cobalt oxides. ACS Catal. 5, 3791–3800 (2015).

    Article  CAS  Google Scholar 

  28. Lum, Y. & Ager, J. W. Evidence for product-specific active sites on oxide-derived Cu catalysts for electrochemical CO2 reduction. Nat. Catal. 2, 86–93 (2019).

    Article  CAS  Google Scholar 

  29. Taccardi, N. et al. Gallium-rich Pd–Ga phases as supported liquid metal catalysts. Nat. Chem. 9, 862–867 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Mehnert, C. P., Cook, R. A., Dispenziere, N. C. & Afeworki, M. Supported ionic liquid catalysis - a new concept for homogeneous hydroformylation catalysis. J. Am. Chem. Soc. 124, 12932–12933 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Huang, Y.-B., Wang, Q., Liang, J., Wang, X. & Cao, R. Soluble metal-nanoparticle-decorated porous coordination polymers for the homogenization of heterogeneous catalysis. J. Am. Chem. Soc. 138, 10104–10107 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Sun, J.-K., Zhan, W.-W., Akita, T. & Xu, Q. Toward homogenization of heterogeneous metal nanoparticle catalysts with enhanced catalytic performance: soluble porous organic cage as a stabilized and homogenizer. J. Am. Chem. Soc. 137, 7063–7066 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Upham, D. C. et al. Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon. Science 358, 917–921 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Stratt, R. M. The electronic structure of liquids. Annu. Rev. Phys. Chem. 41, 175–205 (1990).

    Article  CAS  Google Scholar 

  35. Daeneke, T. et al. Liquid metals: fundamentals and applications in chemistry. Chem. Soc. Rev. 47, 4073–4111 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Zatsepin, D. A., Zatsepin, A. F., Boukhvalov, D. W., Kurmaev, E. Z. & Gavrilov, N. V. Sn-loss effect in a Sn-implanted α-SiO2 host matrix after thermal annealing: A combined XPS, PL, and DFT study. Appl. Surf. Sci. 367, 320–326 (2016).

    Article  CAS  Google Scholar 

  37. Barman, S. R. & Sarma, D. D. Electronic structures of gallium and indium across the solid-liquid transition. Phys. Rev. B 51, 4007–4013 (1995).

    Article  CAS  Google Scholar 

  38. Padova, P. D. et al. A synchroton radiation photoemission study of the oxidation of tin. Surf. Sci. 313, 379–391 (1994).

    Article  Google Scholar 

  39. Navarro-Quezada, A. et al. Surface properties of annealed semiconducting β-Ga2O3 (100) single crystals for epitaxy. Appl. Surf. Sci. 349, 368–373 (2015).

    Article  CAS  Google Scholar 

  40. Lee, H. et al. Electric field-aided selective activation for Indium-Gallium-Zinc-Oxide thin film transistors. Sci. Rep. 6, 35044 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Esrafilzadeh, D. et al. Room temperature CO2 reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces. Nat. Commun. 10, 865 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Lesari, F. & Cicco, A. D. Local symmetry in liquid metals probed by X-ray absorption spectroscopy. J. Phys.: Conf. Ser. 712, 012038 (2016).

    Google Scholar 

  43. Lee, G. W. et al. Difference in icosahedral short-range order in early and late transition metal liquids. Phys. Rev. Lett. 93, 037802 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Du, X. et al. Preparation and characterization of Sn-doped β-Ga2O3 homoepitaxial films by MOCVD. J. Mater. Sci. 50, 3253–3257 (2015).

    Google Scholar 

  45. Mabrouk, K. B., Kauffmann, T. H., Aroui, H. & Fontana, M. D. Raman study of cation effect on sulfate vibration modes in solid state and in aqueous solutions. J. Raman Spectrosc. 44, 1603–1608 (2013).

    Article  CAS  Google Scholar 

  46. Frantz, J. D. Raman spectra of potassium carbonate and bicarbonate aqueous fluids at elevated temperatures and pressure: comparison with theoretical simulations. Chem. Geol. 152, 211–225 (1998).

    Article  CAS  Google Scholar 

  47. Gancarz, T. Density, surface tension and viscosity of Ga-Sn alloys. J. Mol. Liq. 241, 231–236 (2017).

    Article  CAS  Google Scholar 

  48. Feaster, J. T. et al. Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes. ACS Catal. 7, 4822–4827 (2017).

    Article  CAS  Google Scholar 

  49. Dutta, A., Kuzume, A., Rahaman, M., Vesztergom, S. & Broekmann, P. Monitoring the chemical state of catalysts for CO2 electroreduction: an in operando study. ACS Catal. 5, 7498–7502 (2015).

    Article  CAS  Google Scholar 

  50. Baruch, M., Pander, J. E., White, J. L. & Bocarsly, A. B. Mechanistic insight into the reduction of CO2 on tin electrodes using in situ ATR-IR spectroscopy. ACS Catal. 5, 3148–3156 (2015).

    Article  CAS  Google Scholar 

  51. Tang, M. T., Peng, H., Lamoureux, P. S., Bajdich, M. & Abild-Pedersen, F. From electricity to fuels: descriptors for C1 selectivity in electrochemical CO2 reduction. Appl. Catal. B: Environ. 279, 119348 (2020).

    Article  CAS  Google Scholar 

  52. Kortlever, R., Shen, J., Schouten, K. J., Calle-Vallejo, F. & Koper, M. T. M. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 6, 4073–4082 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Haghofer, A., Ferri, D., Fottinger, K. & Rupprechter, G. Who is doing the job? Unraveling the role of Ga2O3 in methanol steam reforming on Pd2Ga/Ga2O3. ACS Catal. 2, 2305–2315 (2012).

    Article  CAS  Google Scholar 

  54. Firet, N. J. & Smitch, W. A. Probing the reaction mechanism of CO2 electroreduction over Ag films via operando infrared spectroscopy. ACS Catal. 7, 606–612 (2017).

    Article  CAS  Google Scholar 

  55. Xia, X. H., Liess, H.-D. & Iwasita, T. Early stages in the oxidation of ethanol at low index single crystal platinum electrodes. J. Electroanal. Chem. 437, 233–240 (1997).

    Article  CAS  Google Scholar 

  56. Jiang, K., Wang, H., Cai, W.-B. & Wang, H. Li electrochemical tuning of metal oxide for highly selective CO2 reduction. ACS Nano 11, 6451–6458 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B Condens. Matter 47, 558–561 (1993).

    Article  CAS  PubMed  Google Scholar 

  58. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B Condens. Matter 49, 14251–14269 (1994).

    Article  CAS  PubMed  Google Scholar 

  59. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 54, 11169–11186 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  61. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B Condens. Matter 50, 17953–17979 (1994).

    Article  PubMed  Google Scholar 

  63. Henkelman, G., Arnaldsson, A. & Jonsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36, 354–360 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Basic Research Program of China (No. 2017YFA0206702), the Natural Science Foundation of China (No. 21925110, 21890751, 91745113, U1832168, 21701164), the National Program for Support of Top-Notch Young Professionals, the Fundamental Research Funds for the Central Universities (No. WK 2060190084), the Anhui Provincial Natural Science Foundation (No. 1808085MB26) and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB36000000). H.L. was supported by the China Postdoctoral Science Foundation (No. 2018M642523). H.A.W. was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB22040402) and the National Natural Science Foundation of China (11525211). We thank X. Su of the Shanghai Synchrotron Radiation Facility for help with in situ XAS experiments, H. Yuan from G. Liu’s group at USTC for assistance with contact angle measurements and X. Zheng of the Hefei National Synchrotron Radiation Laboratory for help with XPS measurements.

Author information

Authors and Affiliations

Authors

Contributions

C.W. and H.L. conceived the ideas, designed and carried out the experiments and co-wrote the manuscript. C.W. and Y.X. supervised the entire project and were responsible for the infrastructure and project direction. J.X. and H.W. conducted the ab initio molecular dynamic simulations of the Ga–Sn melting process. N.Z. and W.C. performed the XAS data analysis. H.L. and N.Z. performed the ab initio simulation of Sn K-edge XANES of liquid Ga–Sn alloy. H.C. and W.B. conducted part of the in situ XAS experiments and assisted with data analysis. X.Z. performed the in situ FT-IR spectroscopy experiments. All the authors participated in discussion of the results and manuscript preparation and revision.

Corresponding author

Correspondence to Changzheng Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Alessandro Longo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–33, Tables 1–5, Notes 1 and 2 and Refs. 1–41.

Supplementary Video 1

This video shows the affinity of the liquid Ga–Sn drop to the oxide-free copper plate.

Supplementary Video 2

This video records the melting process of solid Ga–Sn alloy during CO2 electroreduction at –0.96 V versus RHE. Magnetic stirring and CO2 bubbling were stopped to facilitate inspection of the Ga–Sn electrode. The electrolyte temperature was controlled by immersing the electrochemical cell in a hot water bath. This video shows no visual change of volume, shape or colour of the Ga–Sn alloy during the melting process, consistent with the maintained electrochemical active surface area (Supplementary Fig. 11) across the solid–liquid phase transition.

Supplementary Video 3

This video records the solidification process of liquid Ga–Sn alloy during CO2 electroreduction at –0.96 V versus RHE. The electrolyte temperature was controlled by immersing the electrochemical cell in an ice-water bath. This video indicates no visual change of volume, shape or colour of the Ga–Sn alloy during the solidification process.

Supplementary Data 1

The initial and final atomic coordinates of both the 2-Sn and 12-Sn Ga–Sn clusters for ab initio molecular dynamic simulations (Supplementary Fig. 26) are included in this file.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Xia, J., Zhang, N. et al. Solid–liquid phase transition induced electrocatalytic switching from hydrogen evolution to highly selective CO2 reduction. Nat Catal 4, 202–211 (2021). https://doi.org/10.1038/s41929-021-00576-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00576-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing