Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rational design, enantioselective synthesis and catalytic applications of axially chiral EBINOLs

Abstract

Axially chiral 1,1′-binaphthols (BINOLs) and 1,1′-spirobiindanes (SPINOLs) have achieved great success in the field of asymmetric catalysis. Although several modifications of these skeletons have been reported, new useful scaffolds are in high demand for asymmetric catalysis. Here, on the basis of our ongoing research on atropisomeric alkenes, we have rationally designed a versatile disubstituted 1,1′-(ethene-1,1-diyl)binaphthol (EBINOL) scaffold, which would be a fine complement to 1,1′-binaphthyl and 1,1′-spirobiindane skeletons for asymmetric catalysis. To construct this axially chiral motif asymmetrically, a chiral phosphoric acid-catalysed asymmetric hydroarylation of alkynes has been developed. This approach features an efficient and convergent route to the synthesis of EBINOLs with high functional group tolerance, complete E/Z-selectivity, and excellent enantioselectivities. Density function theory calculations reveal the mechanism and provide insights into the origins of the stereoselectivity and E/Z-selectivity of this chiral Brønsted acid-catalysed alkyne activation method. The potent application of this structural scaffold is demonstrated by a series of asymmetric reactions catalysed by EBINOL derivatives.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Rational design and synthesis of 1,1′-(ethene-1,1-diyl)binaphthyl.
Fig. 2: Preparative synthesis and transformation of EBINOL 7a.
Fig. 3: Application of EBINOL 7a derivatives in asymmetric catalysis.
Fig. 4: DFT calculations for the formation of 7a.

Similar content being viewed by others

Data availability

The X-ray crystallographic coordinates for structures of 5k, 7g and Phos-9a reported in this Article have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers CCDC 1867697, CCDC 1867700 and CCDC 1867701, respectively. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif. Experimental procedures, characterization of all new compounds, Supplementary Tables and Supplementary Figures are available in the Supplementary Information. All of the related DFT computational data are provided in Supplementary Data 1. All other data are available from the authors upon reasonable request.

References

  1. Wang, Y.-B. & Tan, B. Construction of axially chiral compounds via asymmetric organocatalysis. Acc. Chem. Res. 51, 534–547 (2018).

    Article  CAS  Google Scholar 

  2. Kumarasamy, E., Raghunathan, R., Sibi, M. P. & Sivaguru, J. Nonbiaryl and heterobiaryl atropisomers: molecular templates with promise for atropselective chemical transformations. Chem. Rev. 115, 11239–11300 (2015).

    Article  CAS  Google Scholar 

  3. Wencel-Delord, J., Panossian, A., Leroux, F. R. & Colobert, F. Recent advances and new concepts for the synthesis of axially stereoenriched biaryls. Chem. Soc. Rev. 44, 3418–3430 (2015).

    Article  CAS  Google Scholar 

  4. Bringmann, G., Gulder, T., Gulder, T. A. M. & Breuning, M. Atroposelective total synthesis of axially chiral biaryl natural products. Chem. Rev. 111, 563–639 (2011).

    Article  CAS  Google Scholar 

  5. Miyashita, A. et al. Synthesis of 2,2′-bis(diphenylphosphino)-1,1′-binaphthyl (BINAP), an atropisomeric chiral bis(triaryl)phosphine, and its use in the rhodium(i)-catalysed asymmetric hydrogenation of α-(acylamino)acrylic acids. J. Am. Chem. Soc. 102, 7932–7934 (1980).

    Article  CAS  Google Scholar 

  6. Akiyama, T. & Mori, K. Stronger Brønsted acids: recent progress. Chem. Rev. 115, 9277–9306 (2015).

    Article  CAS  Google Scholar 

  7. Parmar, D., Sugiono, E., Raja, S. & Rueping, M. Complete field guide to asymmetric BINOL-phosphate derived Brønsted acid and metal catalysis: history and classification by mode of activation; Brønsted acidity, hydrogen bonding, ion pairing and metal phosphates. Chem. Rev. 114, 9047–9153 (2014).

    Article  CAS  Google Scholar 

  8. Noyori, R. & Takaya, H. BINAP: an efficient chiral element for asymmetric catalysis. Acc. Chem. Res. 23, 345–350 (1990).

    Article  Google Scholar 

  9. Xiao, Y., Sun, Z., Guo, H. & Kwon, O. Chiral phosphines in nucleophilic organocatalysis. Beilstein J. Org. Chem. 10, 2089–2121 (2014).

    Article  Google Scholar 

  10. Xie, J.-H. & Zhou, Q.-L. Chiral diphosphine and monodentate phosphorus ligands on a spiro scaffold for transition-metal-catalysed asymmetric reactions. Acc. Chem. Res. 41, 581–593 (2008).

    Article  CAS  Google Scholar 

  11. Seebach, D., Beck, A. K., Imwinkelzied, R., Roggo, S. & Wonnacott, A. Chirale Alkoxytitan(iv)-Komplexe für enantioselektive Nucleophile Additionen an Aldehyde und als Lewis–Säuren in Diels–Alder-Reaktionen. Helv. Chim. Acta 70, 954–974 (1987).

    Article  CAS  Google Scholar 

  12. Seebach, D. et al. Preparation and characterization of new C2- and C1-symmetric nitrogen, oxygen, phosphorous, and sulfur derivatives and analogs of TADDOL. Part III. Helv. Chim. Acta 95, 1303–1324 (2012).

    Article  CAS  Google Scholar 

  13. Teller, H., Flügge, S., Goddard, R. & Fürstner, A. Enantioselective gold catalysis: opportunities provided by monodentate phosphoramidite ligands with an acyclic TADDOL backbone. Angew. Chem. Int. Ed. 49, 1949–1953 (2010).

    Article  CAS  Google Scholar 

  14. Xie, J.-H. et al. Synthesis of spiro diphosphines and their application in asymmetric hydrogenation of ketones. J. Am. Chem. Soc. 125, 4404–4405 (2003).

    Article  CAS  Google Scholar 

  15. Li, S., Zhang, J.-W., Li, X.-L., Cheng, D.-J. & Tan, B. Phosphoric acid-catalysed asymmetric synthesis of SPINOL derivatives. J. Am. Chem. Soc. 138, 16561–16566 (2016).

    Article  CAS  Google Scholar 

  16. Xie, J.-H., Liu, X.-Y., Xie, J.-B., Wang, L.-X. & Zhou, Q.-L. An additional coordination group leads to extremely efficient chiral iridium catalysts for asymmetric hydrogenation of ketones. Angew. Chem. Int. Ed. 50, 7329–7332 (2011).

    Article  CAS  Google Scholar 

  17. Wang, Y.-B., Zheng, S.-C., Hu, Y.-M. & Tan, B. Brønsted acid-catalysed enantioselective construction of axially chiral arylquinazolinones. Nat. Commun. 8, 15489 (2017).

    Article  Google Scholar 

  18. Zhang, L., Zhang, J., Ma, J., Cheng, D.-J. & Tan, B. Highly atroposelective synthesis of arylpyrroles by catalytic asymmetric Paal–Knorr reaction. J. Am. Chem. Soc. 139, 1714–1717 (2017).

    Article  CAS  Google Scholar 

  19. Chen, G.-Q. et al. Design and synthesis of chiral oxa-spirocyclic ligands for Ir-catalysed direct asymmetric reduction of Bringmann’s lactones with molecular H2. J. Am. Chem. Soc. 140, 8064–8068 (2018).

    Article  CAS  Google Scholar 

  20. Zheng, Z. et al. Chiral cyclohexyl-fused spirobiindanes: practical synthesis, ligand development and asymmetric catalysis. J. Am. Chem. Soc. 140, 10374–10381 (2018).

    Article  CAS  Google Scholar 

  21. Zheng, S.-C. et al. Organocatalytic atroposelective synthesis of axially chiral styrenes. Nat. Commun. 8, 15238 (2017).

    Article  Google Scholar 

  22. Ohmura, T., Yamamoto, Y. & Miyaura, N. Rhodium- or iridium-catalysed trans-hydroboration of terminal alkynes, giving (Z)-1-alkenylboron compounds. J. Am. Chem. Soc. 122, 4990–4991 (2000).

    Article  CAS  Google Scholar 

  23. Willis, M. C. Transition metal catalysed alkene and alkyne hydroacylation. Chem. Rev. 110, 725–748 (2010).

    Article  CAS  Google Scholar 

  24. Doria, F., Percivalle, C. & Freccero, M. Vinylidene–quinone methides, photochemical generation and β-silicon effect on reactivity. J. Org. Chem. 77, 3615–3619 (2012).

    Article  CAS  Google Scholar 

  25. Furusawa, M. et al. Base-catalysed Schmittel cycloisomerization of o-phenylenediyne-linked bis(arenol)s to indeno[1,2-c]chromenes. Tetrahedron Lett. 54, 7107–7110 (2013).

    Article  CAS  Google Scholar 

  26. Liu, Y. et al. Organocatalytic atroposelective intramolecular [4+2] cycloaddition: synthesis of axially chiral heterobiaryls. Angew. Chem. Int. Ed. 57, 6491–6495 (2018).

    Article  CAS  Google Scholar 

  27. Wu, X. et al. Organocatalytic intramolecular [4+2] cycloaddition between in situ generated vinylidene ortho‐quinone methides and benzofurans. Angew. Chem. 129, 13910–13914 (2017).

    Article  Google Scholar 

  28. Jia, S. et al. Organocatalytic enantioselective construction of axially chiral sulfone-containing styrenes. J. Am. Chem. Soc. 140, 7056–7060 (2018).

    Article  CAS  Google Scholar 

  29. Akiyama, T., Itoh, J., Yokota, K. & Fuchibe, K. Enantioselective Mannich‐type reaction catalysed by a chiral Brønsted acid. Angew. Chem. Int. Ed. 43, 1566–1568 (2004).

    Article  CAS  Google Scholar 

  30. Uraguchi, D. & Terada, M. Chiral Brønsted acid-catalysed direct Mannich reactions via electrophilic activation. J. Am. Chem. Soc. 126, 5356–5357 (2004).

    Article  CAS  Google Scholar 

  31. Rueping, M., Kuenkel, A. & Atodiresei, I. Chiral Brønsted acids in enantioselective carbonyl activations–activation modes and applications. Chem. Soc. Rev. 40, 4539–4549 (2011).

    Article  CAS  Google Scholar 

  32. Terada, M. Binaphthol-derived phosphoric acid as a versatile catalyst for enantioselective carbon-carbon bond forming reactions. Chem. Commun. 2008, 4097–4112 (2008).

    Article  Google Scholar 

  33. Akiyama, T. Stronger Brønsted acids. Chem. Rev. 107, 5744–5758 (2007).

    Article  CAS  Google Scholar 

  34. Tsuji, N. et al. Activation of olefins via asymmetric Brønsted acid catalysis. Science 359, 1501–1505 (2018).

    Article  CAS  Google Scholar 

  35. Wang, Z. et al. Organocatalytic asymmetric synthesis of 1,1-diarylethanes by transfer hydrogenation. J. Am. Chem. Soc. 137, 383–389 (2015).

    Article  CAS  Google Scholar 

  36. Chen, Y.-H. et al. Atroposelective synthesis of axially chiral biaryldiols via organocatalytic arylation of 2-naphthols. J. Am. Chem. Soc. 137, 15062–15065 (2015).

    Article  CAS  Google Scholar 

  37. Chen, Y.-H., Qi, L.-W., Fang, F. & Tan, B. Organocatalytic atroposelective arylation of 2-naphthylamines as a practical approach to axially chiral biaryl amino alcohols. Angew. Chem. Int. Ed. 56, 16308–16312 (2017).

    Article  CAS  Google Scholar 

  38. Nakashima, D. & Yamamoto, H. Design of chiral N-triflyl phosphoramide as a strong chiral Brønsted acid and its application to asymmetric Diels–Alder reaction. J. Am. Chem. Soc. 128, 9626–9627 (2006).

    Article  CAS  Google Scholar 

  39. Brunel, J. M. Update 1 of: BINOL: a versatile chiral reagent. Chem. Rev. 107, PR1–PR45 (2007).

    Article  CAS  Google Scholar 

  40. Minnaard, A. J., Feringa, B. L., Lefort, L. & de Vries, J. G. Asymmetric hydrogenation using monodentate phosphoramidite ligands. Acc. Chem. Res. 40, 1267–1277 (2007).

    Article  CAS  Google Scholar 

  41. Teichert, J. F. & Feringa, B. L. Phosphoramidites: privileged ligands in asymmetric catalysis. Angew. Chem. Int. Ed. 49, 2486–2528 (2010).

    Article  CAS  Google Scholar 

  42. Akiyama, T., Morita, H., Itoh, J. & Fuchibe, K. Chiral Brønsted acid catalysed enantioselective hydrophosphonylation of imines: asymmetric synthesis of α-amino phosphonates. Org. Lett. 7, 2583–2585 (2005).

    Article  CAS  Google Scholar 

  43. LaLonde, R. L., Wang, Z. J., Mba, M., Lackner, A. D. & Toste, F. D. Gold(i)-catalysed enantioselective synthesis of pyrazolidines, isoxazolidines and tetrahydrooxazines. Angew. Chem. Int. Ed. 49, 598–601 (2010).

    Article  CAS  Google Scholar 

  44. Kang, Q., Zhao, Z.-A. & You, S.-L. Highly enantioselective Friedel−Crafts reaction of indoles with imines by a chiral phosphoric acid. J. Am. Chem. Soc. 129, 1484–1485 (2007).

    Article  CAS  Google Scholar 

  45. Jia, Y.-X., Zhong, J., Zhu, S.-F., Zhang, C.-M. & Zhou, Q.-L. Chiral Brønsted acid catalysed enantioselective Friedel–Crafts reaction of indoles and α-aryl enamides: construction of quaternary carbon atoms. Angew. Chem. Int. Ed. 46, 5565–5567 (2007).

    Article  CAS  Google Scholar 

  46. Bickelhaupt, F. M. & Houk, K. N. Analyzing reaction rates with the distortion/interaction–activation strain model. Angew. Chem. Int. Ed. 56, 10070–10086 (2017).

    Article  CAS  Google Scholar 

  47. Champagne, P. A. & Houk, K. N. Origins of selectivity and general model for chiral phosphoric acid-catalyzed oxetane desymmetrizations. J. Am. Chem. Soc. 138, 12356–12359 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (grants nos. 21772081, 21825105, 21801121), Shenzhen special funds for the development of biomedicine, Internet, new energy and new material industries (JCYJ20170412151701379, KQJSCX20170328153203) and the Shenzhen Nobel Prize Scientists Laboratory Project (C17213101). P.Y. and K.N.H. acknowledge computational resources provided by the Institute of Digital Research and Education (IDRE) at UCLA and by the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by the NSF (OCI-1053575).

Author information

Authors and Affiliations

Authors

Contributions

B.T. conceived and designed the experiments. Y.-B.W. and Z.-P.Z. performed experiments and prepared the Supplementary Information. J.Z., S.-H.L. and Q.-S.G. helped with new compounds and in analysing the data. J.W. directed the applications. P.Y. performed the DFT calculations and mechanism analysis. K.N.H. directed the DFT calculations and mechanism analysis. B.T., Y.-B.W., P.Y. and K.N.H. wrote the paper. Y.-B.W., P.Y. and Z.-P.Z contributed equally to this work. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to K. N. Houk or Bin Tan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Supplementary Tables 1–7, Supplementary Figs. 1–6, Supplementary references

Supplementary Data 1

Cartesian coordinates of DFT-computed structures

Compound 5k

Crystallographic data for compound 5k

Compound 7g

Crystallographic data for compound 7g

Compound Phos-9a

Crystallographic data for compound Phos-9a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YB., Yu, P., Zhou, ZP. et al. Rational design, enantioselective synthesis and catalytic applications of axially chiral EBINOLs. Nat Catal 2, 504–513 (2019). https://doi.org/10.1038/s41929-019-0278-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-019-0278-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing