Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Catalytic hydrogen atom transfer from hydrosilanes to vinylarenes for hydrosilylation and polymerization

Abstract

Because of the importance of hydrogen atom transfer (HAT) in biology and chemistry, there is increased interest in new strategies to perform HAT in a sustainable manner. Here, we describe a sustainable, net redox-neutral HAT process involving hydrosilanes and alkali metal Lewis base catalysts—eliminating the use of transition metal catalysts—and report an associated mechanism concerning Lewis base-catalysed, complexation-induced HAT. The catalytic Lewis base-catalysed, complexation-induced HAT is capable of accessing both branch-specific hydrosilylation and polymerization of vinylarenes in a highly selective fashion, depending on the Lewis base catalyst used. In this process, the Earth-abundant, alkali metal Lewis base catalyst plays a dual role. It first serves as a HAT initiator and subsequently functions as a silyl radical stabilizing group, which is critical to highly selective cross-radical coupling. An electron paramagnetic resonance study identified a potassiated paramagnetic species, and multistate density functional theory revealed a high HAT character, yet multiconfigurational nature in the transition state of the reaction.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Strategies for the hydrofunctionalization of unsaturated bonds involving transition metal hydride and hypercoordinate silicon hydride catalysis.
Fig. 2: Proposed mechanism for LBCI-HAT.
Fig. 3: Optimization and mechanistic investigation of LBCI-HAT.
Fig. 4: Hydrogen atom trapping experiments.
Fig. 5: Spectroscopic studies for LBCI-HAT.
Fig. 6: Computed reaction energy profile for LBCI-HAT reactions.
Fig. 7: Scope of the branch-selective hydrosilylation involving LBCI-HAT.

Data availability

All data supporting the findings of this study, including experimental details, spectroscopic characterization data for all compounds, and computational details, are available within the paper and its Supplementary Information, or from the corresponding author upon reasonable request.

References

  1. 1.

    Eisenberg, D. C. & Norton, J. R. Hydrogen‐atom transfer reactions of transition‐metal hydrides. Isr. J. Chem. 31, 55–66 (1991).

    CAS  Article  Google Scholar 

  2. 2.

    Kumar, M., Sinha, A. & Francisco, J. S. Role of double hydrogen atom transfer reactions in atmospheric chemistry. Acc. Chem. Res. 49, 877–883 (2016).

    CAS  Article  Google Scholar 

  3. 3.

    Mukaiyama, T. & Yamada, T. Recent advances in aerobic oxygenation. Bull. Chem. Soc. Jpn 68, 17–35 (1995).

    CAS  Article  Google Scholar 

  4. 4.

    Crossley, S. W., Obradors, C., Martinez, R. M. & Shenvi, R. A. Mn-, Fe-, and Co-catalyzed radical hydrofunctionalizations of olefins. Chem. Rev. 116, 8912–9000 (2016).

    CAS  Article  Google Scholar 

  5. 5.

    Mayer, J. M. Hydrogen atom abstraction by metal−oxo complexes: understanding the analogy with organic radical reactions. Acc. Chem. Res. 31, 441–450 (1998).

    CAS  Article  Google Scholar 

  6. 6.

    Guallar, V., Baik, M.-H., Lippard, S. J. & Friesner, R. A. Peripheral heme substituents control the hydrogen-atom abstraction chemistry in cytochromes P450. Proc. Natl Acad. Sci. USA 100, 6998–7002 (2003).

    CAS  Article  Google Scholar 

  7. 7.

    Nakajima, Y. & Shimada, S. Hydrosilylation reaction of olefins: recent advances and perspectives. RSC Adv. 5, 20603–20616 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    Docherty, J. H., Peng, J., Dominey, A. P. & Thomas, S. P. Activation and discovery of earth-abundant metal catalysts using sodium tert-butoxide. Nat. Chem. 9, 595–600 (2017).

    CAS  Article  Google Scholar 

  9. 9.

    Tilset, M. in Comprehensive Organometallic Chemistry III Vol. 1 (eds Crabtree R. H. & Mingos, D. M. P.) 279–305 (Elsevier, 2007).

  10. 10.

    Wiedner, E. S. et al. Thermodynamic hydricity of transition metal hydrides. Chem. Rev. 116, 8655–8692 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Lo, J. C. et al. Functionalized olefin cross-coupling to construct carbon–carbon bonds. Nature 516, 343–348 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    Kuo, J. L., Hartung, J., Han, A. & Norton, J. R. Direct generation of oxygen-stabilized radicals by H• transfer from transition metal hydrides. J. Am. Chem. Soc. 137, 1036–1039 (2015).

    CAS  Article  Google Scholar 

  13. 13.

    Ma, X. & Herzon, S. B. Intermolecular hydropyridylation of unactivated alkenes. J. Am. Chem. Soc. 138, 8718–8721 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    Green, S. A., Matos, J. L., Yagi, A. & Shenvi, R. A. Branch-selective hydroarylation: iodoarene–olefin cross-coupling. J. Am. Chem. Soc. 138, 12779–12782 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    Colomer, E., Corriu, R. J. & Lheureux, M. Group 14 metalloles. 2. Ionic species and coordination compounds. Chem. Rev. 90, 265–282 (1990).

    CAS  Article  Google Scholar 

  16. 16.

    Corriu, R. J., Guerin, C., Henner, B. & Wang, Q. Pentacoordinate hydridosilicates: synthesis and some aspects of their reactivity. Organometallics 10, 2297–2303 (1991).

    CAS  Article  Google Scholar 

  17. 17.

    Shippey, M. A. & Dervan, P. B. Trimethylsilyl anions: direct synthesis of trimethylsilylbenzenes. J. Org. Chem. 42, 2654–2655 (1977).

    CAS  Article  Google Scholar 

  18. 18.

    Toutov, A. A. et al. Silylation of CH bonds in aromatic heterocycles by an Earth-abundant metal catalyst. Nature 518, 80–84 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    Toutov, A. A. et al. Alkali metal-hydroxide-catalyzed C (sp)–H bond silylation. J. Am. Chem. Soc. 139, 1668–1674 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    Liu, W.-B. et al. KOt-Bu-catalyzed dehydrogenative C–H silylation of heteroaromatics: a combined experimental and computational mechanistic study. J. Am. Chem. Soc. 139, 6867–6879 (2017).

    CAS  Article  Google Scholar 

  21. 21.

    Banerjee, S. et al. Ionic and neutral mechanisms for C–H bond silylation of aromatic heterocycles catalyzed by potassium tert-butoxide. J. Am. Chem. Soc. 139, 6880–6887 (2017).

    CAS  Article  Google Scholar 

  22. 22.

    Smith, A. J. et al. Electron-transfer and hydride-transfer pathways in the Stoltz–Grubbs reducing system (KOtBu/Et3SiH). Angew. Chem. Int. Ed. 56, 13747–13751 (2017).

    CAS  Article  Google Scholar 

  23. 23.

    Maifeld, S. V. & Lee, D. Unusual tandem alkynylation and trans-hydrosilylation to form oxasilacyclopentenes. Org. Lett. 7, 4995–4998 (2005).

    CAS  Article  Google Scholar 

  24. 24.

    Gatineau, D. et al. N-heterocyclic carbene-initiated hydrosilylation of styryl alcohols with dihydrosilanes: a mechanistic investigation. Dalton Trans. 42, 7458–7462 (2013).

    CAS  Article  Google Scholar 

  25. 25.

    Ilies, L., Tsuji, H. & Nakamura, E. Synthesis of benzo[b]siloles via KH-promoted cyclization of (2-alkynylphenyl) silanes. Org. Lett. 11, 3966–3968 (2009).

    CAS  Article  Google Scholar 

  26. 26.

    Mandal, S. K. & Roesky, H. W. Group 14 hydrides with low valent elements for activation of small molecules. Acc. Chem. Res. 45, 298–307 (2011).

    Article  Google Scholar 

  27. 27.

    Brunel, J. M. Polysilanes: the grail for a highly-neglected hydrogen storage source. Int. J. Hydrogen Energy 42, 23004–23009 (2017).

    CAS  Article  Google Scholar 

  28. 28.

    Peng, W. et al. Silicon surface modification and characterization for emergent photovoltaic applications based on energy transfer. Chem. Rev. 115, 12764–12796 (2015).

    CAS  Article  Google Scholar 

  29. 29.

    Mutahi, Mw, Nittoli, T., Guo, L. & Sieburth, S. M. Silicon-based metalloprotease inhibitors: synthesis and evaluation of silanol and silanediol peptide analogues as inhibitors of angiotensin-converting enzyme 1. J. Am. Chem. Soc. 124, 7363–7375 (2002).

    CAS  Article  Google Scholar 

  30. 30.

    Ting, R., Adam, M. J., Ruth, T. J. & Perrin, D. M. Arylfluoroborates and alkylfluorosilicates as potential PET imaging agents: high-yielding aqueous biomolecular 18F-labeling. J. Am. Chem. Soc. 127, 13094–13095 (2005).

    CAS  Article  Google Scholar 

  31. 31.

    Kanabus-Kaminska, J., Hawari, J., Griller, D. & Chatgilialoglu, C. Reduction of silicon–hydrogen bond strengths. J. Am. Chem. Soc. 109, 5267–5268 (1987).

    CAS  Article  Google Scholar 

  32. 32.

    Denmark, S. E. & Beutner, G. L. Lewis base catalysis in organic synthesis. Angew. Chem. Int. Ed. 47, 1560–1638 (2008).

    CAS  Article  Google Scholar 

  33. 33.

    Couzijn, E. P., Ehlers, A. W., Schakel, M. & Lammertsma, K. Electronic structure and stability of pentaorganosilicates. J. Am. Chem. Soc. 128, 13634–13639 (2006).

    CAS  Article  Google Scholar 

  34. 34.

    Chuit, C., Corriu, R. J., Reye, C. & Young, J. C. Reactivity of penta-and hexacoordinate silicon compounds and their role as reaction intermediates. Chem. Rev. 93, 1371–1448 (1993).

    CAS  Article  Google Scholar 

  35. 35.

    Baboul, A. G., Curtiss, L. A., Redfern, P. C. & Raghavachari, K. Gaussian-3 theory using density functional geometries and zero-point energies. J. Chem. Phys. 110, 7650–7657 (1999).

    CAS  Article  Google Scholar 

  36. 36.

    Kumpf, R. A. & Dougherty, D. A. A mechanism for ion selectivity in potassium channels: computational studies of cation–π interactions. Science 261, 1708–1710 (1993).

    CAS  Article  Google Scholar 

  37. 37.

    Boyer, J., Corriu, R., Perz, R. & Reye, C. Reduction selective de composes carbonyles par catalyse heterogene a la surface des sels. Tetrahedron 37, 2165–2171 (1981).

    CAS  Article  Google Scholar 

  38. 38.

    Ibrahim, M. R. & Jorgensen, W. L. Ab initio investigations of the β-silicon effect on alkyl and cyclopropyl carbenium ions and radicals. J. Am. Chem. Soc. 111, 819–824 (1989).

    CAS  Article  Google Scholar 

  39. 39.

    Fischer, H. The persistent radical effect: a principle for selective radical reactions and living radical polymerizations. Chem. Rev. 101, 3581–3610 (2001).

    CAS  Article  Google Scholar 

  40. 40.

    Masnovi, J., Samsel, E. G. & Bullock, R. M. Cyclopropylbenzyl radical clocks. J. Chem. Soc. Chem. Commun. 0, 1044–1045 (1989).

    CAS  Article  Google Scholar 

  41. 41.

    Mader, E. A., Larsen, A. S. & Mayer, J. M. Hydrogen atom transfer from iron(ii)−tris[2,2‘-bi(tetrahydropyrimidine)] to TEMPO: a negative enthalpy of activation predicted by the Marcus equation. J. Am. Chem. Soc. 126, 8066–8067 (2004).

    CAS  Article  Google Scholar 

  42. 42.

    Dikalov, S. I. & Harrison, D. G. Methods for detection of mitochondrial and cellular reactive oxygen species. Antioxid. Redox Sign. 20, 372–382 (2014).

    CAS  Article  Google Scholar 

  43. 43.

    Finkelstein, E., Rosen, G. M. & Rauckman, E. J. Spin trapping. Kinetics of the reaction of superoxide and hydroxyl radicals with nitrones. J. Am. Chem. Soc. 102, 4994–4999 (1980).

    CAS  Article  Google Scholar 

  44. 44.

    Lalevée, J. et al. New photoinitiators based on the silyl radical chemistry: polymerization ability, ESR spin trapping, and laser flash photolysis investigation. Macromolecules 41, 4180–4186 (2008).

    Article  Google Scholar 

  45. 45.

    Lalevée, J. et al. Green bulb light source induced epoxy cationic polymerization under air using tris(2, 2′-bipyridine)ruthenium(ii) and silyl radicals. Macromolecules 43, 10191–10195 (2010).

    Article  Google Scholar 

  46. 46.

    Gao, J., Grofe, A., Ren, H. & Bao, P. Beyond Kohn–Sham approximation: hybrid multistate wave function and density functional theory. J. Phys. Chem. Lett. 7, 5143–5149 (2016).

    CAS  Article  Google Scholar 

  47. 47.

    Grofe, A., Chen, X., Liu, W. & Gao, J. Spin-multiplet components and energy splittings by multistate density functional theory. J. Phys. Chem. Lett. 8, 4838–4845 (2017).

    CAS  Article  Google Scholar 

  48. 48.

    Cembran, A. et al. The third dimension of a more O’Ferrall–Jencks diagram for hydrogen atom transfer in the isoelectronic hydrogen exchange reactions of (PhX)2H• with X = O, NH, and CH2. J. Chem. Theory Comput. 8, 4347–4358 (2012).

    CAS  Article  Google Scholar 

  49. 49.

    Luo, S. et al. Density functional theory of open-shell systems. The 3D-series transition-metal atoms and their cations. J. Chem. Theory Comput. 10, 102–121 (2013).

    Article  Google Scholar 

  50. 50.

    Shaik, S. S., Schlegel, H. B. & Wolfe, S. Theoretical Aspects of Physical Organic Chemsitry: The S N 2 Mechanism (Wiley, New York, 1992).

  51. 51.

    Wu, W., Su, P., Shaik, S. & Hiberty, P. C. Classical valence bond approach by modern methods. Chem. Rev. 111, 7557–7593 (2011).

    CAS  Article  Google Scholar 

  52. 52.

    Lai, W., Li, C., Chen, H. & Shaik, S. Hydrogen‐abstraction reactivity patterns from A to Y: the valence bond way. Angew. Chem. Int. Ed. 51, 5556–5578 (2012).

    CAS  Article  Google Scholar 

  53. 53.

    Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158–6170 (1999).

    CAS  Article  Google Scholar 

  54. 54.

    Simoes, J. M. & Beauchamp, J. Transition metal–hydrogen and metal–carbon bond strengths: the keys to catalysis. Chem. Rev. 90, 629–688 (1990).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support from the National Institutes of Health (NIGMS; GM116031 to J.J. and GM117511-01 to B.S.P.), ACS Petroleum Research Fund (PRF number 54831-DNI1 to J.J.), National Science Foundation (CHE; 1709369 to B.S.P.), Swedish Research Council (VR 2015-04114 to K.N.) and University of Texas at Arlington (to K.N.). We acknowledge the NSF (CHE-0234811 and CHE-0840509) for partial funding of the purchases of the NMR spectrometers used in this work.

Author information

Affiliations

Authors

Contributions

P.A., Y.H. and J.J. conceived the project, designed the experiments and wrote the manuscript. P.A. and Y.H. performed the NMR and gas chromatography studies. Y.H., P.A., A.B., C.T. and W.P. further developed the reaction and expanded the scope. Y.H. performed the radical clock and corresponding control experiments. B.S.P., P.A. and S.S. performed the EPR studies. J.G., K.N. and X.C. conducted the computational studies. G.L., P.A., K.Y. and A.K. carried out the synthesis and analysis of polymers. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Junha Jeon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Discussion, Supplementary Figures 1–29, Supplementary Tables 1–7, Supplementary References

Supplementary Data 1

Cartesian coordinates

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Asgari, P., Hua, Y., Bokka, A. et al. Catalytic hydrogen atom transfer from hydrosilanes to vinylarenes for hydrosilylation and polymerization. Nat Catal 2, 164–173 (2019). https://doi.org/10.1038/s41929-018-0217-z

Download citation

Further reading

Search

Quick links