Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Redox tuning the Weakley-type polyoxometalate archetype for the oxygen evolution reaction


Water oxidation is a key reaction for the conversion of solar energy into chemical fuels, but effective water-oxidation catalysts are often based on rare and costly precious metals such as Pt, Ir or Ru. Developing strategies based on earth-abundant metals is important to explore critical aspects of this reaction, and to see whether different and more efficient applications are possible for energy systems. Herein, we present an approach to tuning a redox-active electrocatalyst based on the doping of molybdenum into the tungsten framework of [Co4(H2O)2(PW9O34)2]10–, known as the Weakley sandwich. The Mo-doped framework was confirmed by X-ray crystallography, electrospray ionization mass spectrometry and inductively coupled plasma optical emission spectrometry studies. The doping of molybdenum into the robust Weakley sandwich framework leads to the oxidation of water at a low onset potential, and with no catalyst degradation, whereby the overpotential of the oxygen evolution reaction is lowered by 188 mV compared with the pure tungsten framework.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Polyhedral structures of earth-abundant-based WOCs.
Fig. 2: Electroanalytical analysis of the compounds.
Fig. 3: Electrochemical kinetics analysis of the compounds.
Fig. 4: Mass spectrometry data showing the stability of the compounds.
Fig. 5: Crystallographic data showing site occupancy for the six compounds.


  1. Kanan, M. W. & Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 231, 1072–1075 (2008).

    Article  Google Scholar 

  2. Young, K. J. et al. Light-driven water oxidation for solar fuels. Coord. Chem. Rev. 256, 2503–2520 (2012).

    Article  CAS  Google Scholar 

  3. Meyer, T. J. Catalysis: the art of splitting water. Nature 451, 778–779 (2008).

    Article  CAS  Google Scholar 

  4. Eisenberg, R. & Gray, H. B. Preface on making oxygen. Inorg. Chem. 47, 1697–1699 (2008).

    Article  CAS  Google Scholar 

  5. Mazloomi, K. & Gomes, C. Hydrogen as an energy carrier: prospects and challenges. Renew. Sustain. Energy Rev. 16, 3024–3033 (2012).

    Article  CAS  Google Scholar 

  6. Dau, H. et al. The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis. ChemCatChem 2, 724–761 (2010).

    Article  CAS  Google Scholar 

  7. Zou, X. & Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44, 5148–5180 (2015).

    Article  CAS  Google Scholar 

  8. Slavcheva, E. et al. Sputtered iridium oxide films as electrocatalysts for water splitting via PEM electrolysis. Electrochim. Acta 52, 3889–3894 (2007).

    Article  CAS  Google Scholar 

  9. Fillol, J. L. et al. Efficient water oxidation catalysts based on readily available iron coordination complexes. Nat. Chem. 3, 807–813 (2011).

    Article  CAS  Google Scholar 

  10. Ruttinger, W. & Dismukes, G. C. Synthetic water-oxidation catalysts for artificial photosynthetic water oxidation. Chem. Rev. 97, 1–24 (1997).

    Article  Google Scholar 

  11. Wasylenko, D. J., Palmer, R. D. & Berlinguette, C. P. Homogeneous water oxidation catalysts containing a single metal site. Chem. Commun. 49, 218–227 (2013).

    Article  CAS  Google Scholar 

  12. Cole-Hamilton, D. J. Homogeneous catalysis—new approaches to catalyst separation, recovery, and recycling. Science 299, 1702–1706 (2003).

    Article  CAS  Google Scholar 

  13. Evangelisti, F., Güttinger, R., Moré, R., Luber, S. & Patzke, G. R. Closer to photosystem II: a Co4O4 cubane catalyst with flexible ligand architecture. J. Am. Chem. Soc. 135, 18734–18737 (2013).

    Article  CAS  Google Scholar 

  14. Brimblecombe, R., Swiegers, G. F., Dismukes, G. C. & Spiccia, L. Sustained water oxidation photocatalysis by a bioinspired manganese cluster. Angew. Chem. Int. Ed. 47, 7335–7338 (2008).

    Article  CAS  Google Scholar 

  15. Dismukes, G. C. et al. Development of bioinspired Mn4O4-cubane water oxidation catalysts: lessons from photosynthesis. Acc. Chem. Res. 42, 1935–1943 (2009).

    Article  CAS  Google Scholar 

  16. Enthaler, S., Junge, K. & Beller, M. Sustainable metal catalysis with iron: from rust to a rising star? Angew. Chem. Int. Ed. 47, 3317–3321 (2008).

    Article  CAS  Google Scholar 

  17. Ellis, W. C., McDaniel, N. D., Bernhard, S. & Collins, T. J. Fast water oxidation using iron. J. Am. Chem. Soc. 132, 10990–10991 (2010).

    Article  CAS  Google Scholar 

  18. Evangelisti, F., Car, P. E., Blacque, O. & Patzke, G. R. Photocatalytic water oxidation with cobalt-containing tungstobismutates: tuning the metal core. Catal. Sci. Technol. 3, 3117–3129 (2013).

    Article  CAS  Google Scholar 

  19. Lv, H. et al. Polyoxometalate water oxidation catalysts and the production of green fuel. Chem. Soc. Rev. 41, 7572–7589 (2012).

    Article  CAS  Google Scholar 

  20. Yin, Q. et al. A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 328, 342–345 (2010).

    Article  CAS  Google Scholar 

  21. Huang, Z. et al. Efficient light-driven carbon-free cobalt-based molecular catalyst for water oxidation. J. Am. Chem. Soc. 133, 2068–2071 (2011).

    Article  CAS  Google Scholar 

  22. Weakley, T. J. R., Evans, H. T., Showell, J. S., Tourné, G. F. & Tourné, C. M. 18-Tungstotetracobalto(11)diphosphate and related anions: a novel structural class of heteropolyanions. J. Chem. Soc. Chem. Commun. 139, 140 (1973).

    Google Scholar 

  23. Han, X. B. et al. Polyoxometalate-based cobalt-phosphate molecular catalysts for visible light-driven water oxidation. J. Am. Chem. Soc. 136, 5359–5366 (2014).

    Article  CAS  Google Scholar 

  24. Goberna-Ferrón, S., Vigara, L., Soriano-López, J. & Galán-Mascarós, J. R. Identification of a nonanuclear {Coii 9} polyoxometalate cluster as a homogeneous catalyst for water oxidation. Inorg. Chem. 46, 11707–11715 (2012).

    Article  Google Scholar 

  25. Zhu, G. et al. Water oxidation catalyzed by a new tetracobalt-substituted polyoxometalate complex: [{Co4(μ-OH)(H2O)3}(Si2W19O70)]11−. Dalton Trans. 41, 2084–2090 (2012).

    Article  CAS  Google Scholar 

  26. Tanaka, S. et al Visible light-induced water oxidation catalyzed by molybdenum-based polyoxometalates with mono- and dicobalt(iii) cores as oxygen-evolving centers. Chem. Commun. 48, 1653–16559 (2012).

    Article  CAS  Google Scholar 

  27. Sartorel, A., McDaniel, N. D., Bernhard, S. & Bonchio, M. Polyoxometalate embedding of a tetraruthenium(iv)-oxo-core by template-directed metalation of [γ-SiW10O36]8−: a totally inorganic oxygen-evolving catalyst. J. Am. Chem. Soc. 130, 5006–5007 (2008).

    Article  CAS  Google Scholar 

  28. Sartorel, A. et al. Water oxidation at tetraruthenate core stabilized by polyoxometalated ligands: experimental and computational evidence to trace the competente intermediates. J. Am. Chem. Soc. 131, 16051–16053 (2009).

    Article  CAS  Google Scholar 

  29. Zhang., B. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352, 333–337 (2016).

    Article  CAS  Google Scholar 

  30. Stracke, J. J. & Finke, R. G. Electrocatalytic water oxidation beginning with the cobalt polyoxometalate [Co4(H2O)2(PW9O34)2]10–: identification of heterogeneous CoO x as the dominant catalyst. J. Am. Chem. Soc. 133, 14872–14875 (2011).

    Article  CAS  Google Scholar 

  31. Concepcion, J. J., Binstead, R. A., Alibabaei, L. & Meyer, T. J. Application of the rotating ring-disc-electrode technique to water oxidation by surface-bound molecular catalysts. Inorg. Chem. 52, 10744–10746 (2013).

    Article  CAS  Google Scholar 

  32. Zhong, D. K., Zhao, S. L., Polyansky, D. E. & Fujita, E. Diminished photoisomerization of active ruthenium water oxidation catalyst by anchoring to metal oxide electrodes. J. Catal. 307, 140–147 (2013).

    Article  CAS  Google Scholar 

  33. Klepser, B. M. & Bartlett, B. M. Anchoring a molecular iron catalyst to solar-responsive WO3 improves the rate and selectivity of photoelectrochemical water oxidation. J. Am. Chem. Soc. 136, 1694–1697 (2014).

    Article  CAS  Google Scholar 

  34. Soriano-López, J. et al. Cobalt polyoxometalates as heterogeneous water oxidation catalysts. Inorg. Chem. 52, 4753–4755 (2013).

    Article  Google Scholar 

  35. Soriano-López, J. et al. Tetracobalt-polyoxometalate catalysts for water oxidation: key mechanistic details. J. Catal. 350, 56–63 (2017).

    Article  Google Scholar 

  36. Song, F. et al. {Co4O4} and {Co x Ni4−xO4} cubane water oxidation catalysts as surface cut-outs of cobalt oxides. J. Am. Chem. Soc. 139, 14198–14208 (2017).

    Article  CAS  Google Scholar 

  37. Li, S. et al. Rare sandwich-type polyoxomolybdates constructed form di/tetra-nuclear transition-metal clusters and trivacant keggin germanomolybdate fragments. Inorg. Chem. 48, 9819–9830 (2009).

    Article  CAS  Google Scholar 

  38. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A64, 112–122 (2008).

    Article  Google Scholar 

  39. Müller, P. Crystal Structure Refinement: A Crystallographer’s Guide to SHELXL (Oxford Univ. Press, Oxford, 2006).

    Book  Google Scholar 

  40. Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 45, 849–854 (2012).

    Article  CAS  Google Scholar 

Download references


We acknowledge J. Mathieson and D. Castro-Spencer for their kind help and support in acquiring the ESI-IM-MS data. We thank L. MacDonald for offering supportive discussion on the electrochemistry. We also thank J. M. Poblet and J. Carbò for helpful discussion on the POM design, characterization and electrocatalysis. We gratefully acknowledge financial support from the Engineering and Physical Sciences Research Council (grant nos EP/H024107/1, EP/J015156/1, EP/K021966/1, EP/L015668/1, EP/L023652/1), the European Research Council (project 670467 SMART-POM) and the University of Glasgow. This work was partially funded by the Spanish Ministerio de Economia y Competitividad (MINECO) through projects CTQ2015-71287-R and the Severo Ochoa Excellence Accreditation 2014-2018 SEV-2013-0319; the Generalitat de Catalunya (2014-SGR-797) and the Centres de Recera de Catalunya Programme/Generalitat de Catalunya. We also thank Chemistry and Molecular Sciences and Technologies European Cooperation in Science & Technology Action CM1203.

Author information

Authors and Affiliations



L.C. conceived the original concept and both L.C. and J.R.G.-M. designed the project and together with L.V.-N. coordinated the efforts of the research team. M.M.-S. and J.S.-L. contributed equally. M.M.-S. and J.S.-L. synthesized the compounds, M.M.-S. characterized the compounds electrochemically, analysed the ESI-IM-MS and determined the formula for each compound. J.S.-L. measured the oxygen evolution. R.S.W. and J.-J.C. supervised directly the electrochemistry and the synthetic work and characterization analysis. D.-L.L. finalized the X-ray structures. M.M.-S., L.V.-N. and L.C. co-wrote the paper with input from all the authors.

Corresponding authors

Correspondence to José Ramón Galán-Mascarós or Leroy Cronin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures 1–10, Supplementary Tables 1–19, Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martin-Sabi, M., Soriano-López, J., Winter, R.S. et al. Redox tuning the Weakley-type polyoxometalate archetype for the oxygen evolution reaction. Nat Catal 1, 208–213 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing