Redox tuning the Weakley-type polyoxometalate archetype for the oxygen evolution reaction

Abstract

Water oxidation is a key reaction for the conversion of solar energy into chemical fuels, but effective water-oxidation catalysts are often based on rare and costly precious metals such as Pt, Ir or Ru. Developing strategies based on earth-abundant metals is important to explore critical aspects of this reaction, and to see whether different and more efficient applications are possible for energy systems. Herein, we present an approach to tuning a redox-active electrocatalyst based on the doping of molybdenum into the tungsten framework of [Co4(H2O)2(PW9O34)2]10–, known as the Weakley sandwich. The Mo-doped framework was confirmed by X-ray crystallography, electrospray ionization mass spectrometry and inductively coupled plasma optical emission spectrometry studies. The doping of molybdenum into the robust Weakley sandwich framework leads to the oxidation of water at a low onset potential, and with no catalyst degradation, whereby the overpotential of the oxygen evolution reaction is lowered by 188 mV compared with the pure tungsten framework.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Polyhedral structures of earth-abundant-based WOCs.
Fig. 2: Electroanalytical analysis of the compounds.
Fig. 3: Electrochemical kinetics analysis of the compounds.
Fig. 4: Mass spectrometry data showing the stability of the compounds.
Fig. 5: Crystallographic data showing site occupancy for the six compounds.

References

  1. 1.

    Kanan, M. W. & Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 231, 1072–1075 (2008).

    Article  Google Scholar 

  2. 2.

    Young, K. J. et al. Light-driven water oxidation for solar fuels. Coord. Chem. Rev. 256, 2503–2520 (2012).

    CAS  Article  Google Scholar 

  3. 3.

    Meyer, T. J. Catalysis: the art of splitting water. Nature 451, 778–779 (2008).

    CAS  Article  Google Scholar 

  4. 4.

    Eisenberg, R. & Gray, H. B. Preface on making oxygen. Inorg. Chem. 47, 1697–1699 (2008).

    CAS  Article  Google Scholar 

  5. 5.

    Mazloomi, K. & Gomes, C. Hydrogen as an energy carrier: prospects and challenges. Renew. Sustain. Energy Rev. 16, 3024–3033 (2012).

    CAS  Article  Google Scholar 

  6. 6.

    Dau, H. et al. The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis. ChemCatChem 2, 724–761 (2010).

    CAS  Article  Google Scholar 

  7. 7.

    Zou, X. & Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44, 5148–5180 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    Slavcheva, E. et al. Sputtered iridium oxide films as electrocatalysts for water splitting via PEM electrolysis. Electrochim. Acta 52, 3889–3894 (2007).

    CAS  Article  Google Scholar 

  9. 9.

    Fillol, J. L. et al. Efficient water oxidation catalysts based on readily available iron coordination complexes. Nat. Chem. 3, 807–813 (2011).

    CAS  Article  Google Scholar 

  10. 10.

    Ruttinger, W. & Dismukes, G. C. Synthetic water-oxidation catalysts for artificial photosynthetic water oxidation. Chem. Rev. 97, 1–24 (1997).

    Article  Google Scholar 

  11. 11.

    Wasylenko, D. J., Palmer, R. D. & Berlinguette, C. P. Homogeneous water oxidation catalysts containing a single metal site. Chem. Commun. 49, 218–227 (2013).

    CAS  Article  Google Scholar 

  12. 12.

    Cole-Hamilton, D. J. Homogeneous catalysis—new approaches to catalyst separation, recovery, and recycling. Science 299, 1702–1706 (2003).

    CAS  Article  Google Scholar 

  13. 13.

    Evangelisti, F., Güttinger, R., Moré, R., Luber, S. & Patzke, G. R. Closer to photosystem II: a Co4O4 cubane catalyst with flexible ligand architecture. J. Am. Chem. Soc. 135, 18734–18737 (2013).

    CAS  Article  Google Scholar 

  14. 14.

    Brimblecombe, R., Swiegers, G. F., Dismukes, G. C. & Spiccia, L. Sustained water oxidation photocatalysis by a bioinspired manganese cluster. Angew. Chem. Int. Ed. 47, 7335–7338 (2008).

    CAS  Article  Google Scholar 

  15. 15.

    Dismukes, G. C. et al. Development of bioinspired Mn4O4-cubane water oxidation catalysts: lessons from photosynthesis. Acc. Chem. Res. 42, 1935–1943 (2009).

    CAS  Article  Google Scholar 

  16. 16.

    Enthaler, S., Junge, K. & Beller, M. Sustainable metal catalysis with iron: from rust to a rising star? Angew. Chem. Int. Ed. 47, 3317–3321 (2008).

    CAS  Article  Google Scholar 

  17. 17.

    Ellis, W. C., McDaniel, N. D., Bernhard, S. & Collins, T. J. Fast water oxidation using iron. J. Am. Chem. Soc. 132, 10990–10991 (2010).

    CAS  Article  Google Scholar 

  18. 18.

    Evangelisti, F., Car, P. E., Blacque, O. & Patzke, G. R. Photocatalytic water oxidation with cobalt-containing tungstobismutates: tuning the metal core. Catal. Sci. Technol. 3, 3117–3129 (2013).

    CAS  Article  Google Scholar 

  19. 19.

    Lv, H. et al. Polyoxometalate water oxidation catalysts and the production of green fuel. Chem. Soc. Rev. 41, 7572–7589 (2012).

    CAS  Article  Google Scholar 

  20. 20.

    Yin, Q. et al. A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 328, 342–345 (2010).

    CAS  Article  Google Scholar 

  21. 21.

    Huang, Z. et al. Efficient light-driven carbon-free cobalt-based molecular catalyst for water oxidation. J. Am. Chem. Soc. 133, 2068–2071 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    Weakley, T. J. R., Evans, H. T., Showell, J. S., Tourné, G. F. & Tourné, C. M. 18-Tungstotetracobalto(11)diphosphate and related anions: a novel structural class of heteropolyanions. J. Chem. Soc. Chem. Commun. 139, 140 (1973).

    Google Scholar 

  23. 23.

    Han, X. B. et al. Polyoxometalate-based cobalt-phosphate molecular catalysts for visible light-driven water oxidation. J. Am. Chem. Soc. 136, 5359–5366 (2014).

    CAS  Article  Google Scholar 

  24. 24.

    Goberna-Ferrón, S., Vigara, L., Soriano-López, J. & Galán-Mascarós, J. R. Identification of a nonanuclear {Coii 9} polyoxometalate cluster as a homogeneous catalyst for water oxidation. Inorg. Chem. 46, 11707–11715 (2012).

    Article  Google Scholar 

  25. 25.

    Zhu, G. et al. Water oxidation catalyzed by a new tetracobalt-substituted polyoxometalate complex: [{Co4(μ-OH)(H2O)3}(Si2W19O70)]11−. Dalton Trans. 41, 2084–2090 (2012).

    CAS  Article  Google Scholar 

  26. 26.

    Tanaka, S. et al Visible light-induced water oxidation catalyzed by molybdenum-based polyoxometalates with mono- and dicobalt(iii) cores as oxygen-evolving centers. Chem. Commun. 48, 1653–16559 (2012).

    CAS  Article  Google Scholar 

  27. 27.

    Sartorel, A., McDaniel, N. D., Bernhard, S. & Bonchio, M. Polyoxometalate embedding of a tetraruthenium(iv)-oxo-core by template-directed metalation of [γ-SiW10O36]8−: a totally inorganic oxygen-evolving catalyst. J. Am. Chem. Soc. 130, 5006–5007 (2008).

    CAS  Article  Google Scholar 

  28. 28.

    Sartorel, A. et al. Water oxidation at tetraruthenate core stabilized by polyoxometalated ligands: experimental and computational evidence to trace the competente intermediates. J. Am. Chem. Soc. 131, 16051–16053 (2009).

    CAS  Article  Google Scholar 

  29. 29.

    Zhang., B. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352, 333–337 (2016).

    CAS  Article  Google Scholar 

  30. 30.

    Stracke, J. J. & Finke, R. G. Electrocatalytic water oxidation beginning with the cobalt polyoxometalate [Co4(H2O)2(PW9O34)2]10–: identification of heterogeneous CoO x as the dominant catalyst. J. Am. Chem. Soc. 133, 14872–14875 (2011).

    CAS  Article  Google Scholar 

  31. 31.

    Concepcion, J. J., Binstead, R. A., Alibabaei, L. & Meyer, T. J. Application of the rotating ring-disc-electrode technique to water oxidation by surface-bound molecular catalysts. Inorg. Chem. 52, 10744–10746 (2013).

    CAS  Article  Google Scholar 

  32. 32.

    Zhong, D. K., Zhao, S. L., Polyansky, D. E. & Fujita, E. Diminished photoisomerization of active ruthenium water oxidation catalyst by anchoring to metal oxide electrodes. J. Catal. 307, 140–147 (2013).

    CAS  Article  Google Scholar 

  33. 33.

    Klepser, B. M. & Bartlett, B. M. Anchoring a molecular iron catalyst to solar-responsive WO3 improves the rate and selectivity of photoelectrochemical water oxidation. J. Am. Chem. Soc. 136, 1694–1697 (2014).

    CAS  Article  Google Scholar 

  34. 34.

    Soriano-López, J. et al. Cobalt polyoxometalates as heterogeneous water oxidation catalysts. Inorg. Chem. 52, 4753–4755 (2013).

    Article  Google Scholar 

  35. 35.

    Soriano-López, J. et al. Tetracobalt-polyoxometalate catalysts for water oxidation: key mechanistic details. J. Catal. 350, 56–63 (2017).

    Article  Google Scholar 

  36. 36.

    Song, F. et al. {Co4O4} and {Co x Ni4−xO4} cubane water oxidation catalysts as surface cut-outs of cobalt oxides. J. Am. Chem. Soc. 139, 14198–14208 (2017).

    CAS  Article  Google Scholar 

  37. 37.

    Li, S. et al. Rare sandwich-type polyoxomolybdates constructed form di/tetra-nuclear transition-metal clusters and trivacant keggin germanomolybdate fragments. Inorg. Chem. 48, 9819–9830 (2009).

    CAS  Article  Google Scholar 

  38. 38.

    Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A64, 112–122 (2008).

    Article  Google Scholar 

  39. 39.

    Müller, P. Crystal Structure Refinement: A Crystallographer’s Guide to SHELXL (Oxford Univ. Press, Oxford, 2006).

    Google Scholar 

  40. 40.

    Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 45, 849–854 (2012).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge J. Mathieson and D. Castro-Spencer for their kind help and support in acquiring the ESI-IM-MS data. We thank L. MacDonald for offering supportive discussion on the electrochemistry. We also thank J. M. Poblet and J. Carbò for helpful discussion on the POM design, characterization and electrocatalysis. We gratefully acknowledge financial support from the Engineering and Physical Sciences Research Council (grant nos EP/H024107/1, EP/J015156/1, EP/K021966/1, EP/L015668/1, EP/L023652/1), the European Research Council (project 670467 SMART-POM) and the University of Glasgow. This work was partially funded by the Spanish Ministerio de Economia y Competitividad (MINECO) through projects CTQ2015-71287-R and the Severo Ochoa Excellence Accreditation 2014-2018 SEV-2013-0319; the Generalitat de Catalunya (2014-SGR-797) and the Centres de Recera de Catalunya Programme/Generalitat de Catalunya. We also thank Chemistry and Molecular Sciences and Technologies European Cooperation in Science & Technology Action CM1203.

Author information

Affiliations

Authors

Contributions

L.C. conceived the original concept and both L.C. and J.R.G.-M. designed the project and together with L.V.-N. coordinated the efforts of the research team. M.M.-S. and J.S.-L. contributed equally. M.M.-S. and J.S.-L. synthesized the compounds, M.M.-S. characterized the compounds electrochemically, analysed the ESI-IM-MS and determined the formula for each compound. J.S.-L. measured the oxygen evolution. R.S.W. and J.-J.C. supervised directly the electrochemistry and the synthetic work and characterization analysis. D.-L.L. finalized the X-ray structures. M.M.-S., L.V.-N. and L.C. co-wrote the paper with input from all the authors.

Corresponding authors

Correspondence to José Ramón Galán-Mascarós or Leroy Cronin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures 1–10, Supplementary Tables 1–19, Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martin-Sabi, M., Soriano-López, J., Winter, R.S. et al. Redox tuning the Weakley-type polyoxometalate archetype for the oxygen evolution reaction. Nat Catal 1, 208–213 (2018). https://doi.org/10.1038/s41929-018-0037-1

Download citation

Further reading

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing