Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Matters Arising
  • Published:

Reply to: Safe practices for mobility evaluation in field-effect transistors and Hall effect measurements using emerging materials

The Original Article was published on 17 April 2024

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transfer characteristics of CsSnI3-based TFTs.

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Liu, A. et al. High-performance inorganic metal halide perovskite transistors. Nat. Electron. 5, 78–83 (2022).

    Article  Google Scholar 

  2. Bruevich, V. & Podzorov, V. Safe practices for mobility evaluation in field-effect transistors and Hall effect measurements using emerging materials. Nat. Electron. https://doi.org/10.1038/s41928-024-01154-8 (2024).

  3. Xu, Y. et al. Essential effects on the mobility extraction reliability for organic transistors. Adv. Funct. Mater. 28, 1803907 (2018).

    Article  Google Scholar 

  4. Ng, H. K. et al. Reply to: Mobility overestimation in molybdenum disulfide transistors due to invasive voltage probes. Nat. Electron. 6, 839–841 (2023).

    Article  Google Scholar 

  5. Ma, J., Yang, R. & Chen, H. A large modulation of electron–phonon coupling and an emergent superconducting dome in doped strong ferroelectrics. Nat. Commun. 12, 2314 (2021).

    Article  Google Scholar 

  6. Jang, C. et al. Tuning the effective fine structure constant in graphene: opposing effects of dielectric screening on short-and long-range potential scattering. Phys. Rev. Lett. 101, 146805 (2008).

    Article  Google Scholar 

  7. Wu, J. et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat. Nanotechnol. 12, 530–534 (2017).

    Article  Google Scholar 

  8. Li, T. et al. A native oxide high-κ gate dielectric for two-dimensional electronics. Nat. Electron. 3, 473–478 (2020).

  9. Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices (Wiley, 2006).

  10. Kamiya, T. & Hosono, H. Material characteristics and applications of transparent amorphous oxide semiconductors. NPG Asia Mater. 2, 15–22 (2010).

    Article  Google Scholar 

  11. Kamiya, T. & Hosono, H. (Invited) Roles of hydrogen in amorphous oxide semiconductor. ECS Trans. 54, 103 (2013).

    Article  Google Scholar 

  12. Westbrook, R. J. E. et al. Local background hole density drives nonradiative recombination in tin halide perovskites. ACS Energy Lett. 9, 732–739 (2024).

    Article  Google Scholar 

  13. Herz, L. M. Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits. ACS Energy Lett. 2, 1539–1548 (2017).

    Article  Google Scholar 

  14. Chung, I., Lee, B., He, J., Chang, R. P. H. & Kanatzidis, M. G. All-solid-state dye-sensitized solar cells with high efficiency. Nature 485, 486–489 (2012).

    Article  Google Scholar 

  15. Chung, I. et al. CsSnI3: semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. J. Am. Chem. Soc. 134, 8579–8587 (2012).

    Article  Google Scholar 

  16. Jo, J. et al. Causes of the difference between Hall mobility and field-effect mobility for p-type RF sputtered Cu2O thin-film transistors. IEEE Trans. Electron Dev. 67, 5557–5563 (2020).

    Article  Google Scholar 

  17. Ogo, Y. et al. P-channel thin-film transistor using p-type oxide semiconductor, SnO. Appl. Phys. Lett. 93, 032113 (2008).

    Article  Google Scholar 

  18. Fortunato, E. et al. Thin-film transistors based on p-type Cu2O thin films produced at room temperature. Appl. Phys. Lett. 96, 192102 (2010).

    Article  Google Scholar 

  19. Matsuzaki, K. et al. Epitaxial growth of high mobility Cu2O thin films and application to p-channel thin film transistor. Appl. Phys. Lett. 93, 202107 (2008).

    Article  Google Scholar 

  20. Yao, Z. et al. Room temperature fabrication of p-channel Cu2O thin-film transistors on flexible polyethylene terephthalate substrates. Appl. Phys. Lett. 101, 042114 (2012).

    Article  Google Scholar 

  21. Wang, S. et al. Grain engineering for improved charge carrier transport in two-dimensional lead-free perovskite field-effect transistors. Mater. Horiz. 9, 2633–2643 (2022).

    Article  Google Scholar 

  22. Liu, A. et al. High-performance metal halide perovskite transistors. Nat. Electron. 6, 559–571 (2023).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.L., H.Z. and Y.-Y.N. wrote the paper.

Corresponding authors

Correspondence to Ao Liu or Yong-Young Noh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, A., Zhu, H. & Noh, YY. Reply to: Safe practices for mobility evaluation in field-effect transistors and Hall effect measurements using emerging materials. Nat Electron 7, 269–270 (2024). https://doi.org/10.1038/s41928-024-01155-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-024-01155-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing