Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

End-to-end design of ingestible electronics

Abstract

Ingestible electronics can potentially be used to track and treat gastrointestinal diseases in real time. In the past decade, substantial improvements have been made to ingestible electronic pills at the sensor, circuit and system levels, which has improved the clinical applicability of the technology by increasing device sensitivity, lifetime and location awareness. Here we explore the development of ingestible electronics and provide a step-by-step guide for the design of ingestible capsules at the system level. We consider the anatomical and physiological characteristics of gastrointestinal organs, which set requirements and constraints on ingestible electronics in terms of size, shape, topology and the materials used for packaging. We then examine the key design components: sensors and actuators, integrated circuits, communication, power, packaging, localization and locomotion. We also consider the challenges that must be addressed to realize the full application potential of ingestible electronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A step-by-step design process for ingestible electronics.
Fig. 2: The anatomy and physiology of GI organs.
Fig. 3: Ingestible pills with sensing and actuation capabilities.
Fig. 4: Circuit-level block diagram of ingestibles.
Fig. 5: Powering options for ingestibles.
Fig. 6: Localization of ingestibles in the GI tract.
Fig. 7: Design guidelines.

Similar content being viewed by others

References

  1. Jacobson, B. & Mackay, R. S. A pH-endoradiosonde. Lancet 269, 1224 (1957).

    Article  Google Scholar 

  2. Farrar, J. T., Zworykin, V. K. & Baum, J. Pressure-sensitive telemetering capsule for study of gastrointestinal motility. Science 126, 975–976 (1957).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Iddan, G., Meron, G., Glukhovsky, A. & Swain, P. Wireless capsule endoscopy. Nature 405, 417–417 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Steiger, C. et al. Ingestible electronics for diagnostics and therapy. Nat. Rev. Mater. 4, 83–98 (2019).

    Article  ADS  CAS  Google Scholar 

  5. Litvinova, O. et al. Digital pills with ingestible sensors: patent landscape analysis. Pharmaceuticals 15, 1025 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Miley, D. et al. Video capsule endoscopy and ingestible electronics: emerging trends in sensors, circuits, materials, telemetry, optics, and rapid reading software. Adv. Devices Instrum. 2021, 9854040 (2021).

    Article  ADS  Google Scholar 

  7. Smart Pills Market by Application (Capsule Endoscopy, Drug Delivery, Patient Monitoring), Target Area (Esophagus, Small Intestine, Large Intestine, Stomach), End User (Hospitals, Diagnostic Centers) & Region—Global Forecast to 2028 (Markets and Markets, 2023); https://www.marketsandmarkets.com/Market-Reports/smart-pill-technology-market-840.html

  8. Kalantar-Zadeh, K., Ha, N., Ou, J. Z. & Berean, K. J. Ingestible sensors. ACS Sensors 2, 468–483 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Beardslee, L. A. et al. Ingestible sensors and sensing systems for minimally invasive diagnosis and monitoring: the next frontier in minimally invasive screening. ACS Sensors 5, 891–910 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Cummins, G. Smart pills for gastrointestinal diagnostics and therapy. Adv. Drug Deliv. Rev. 177, 113931 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Browning, K. N. & Travagli, R. A. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr. Physiol. 4, 1339 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dieterich, W., Schink, M. & Zopf, Y. Microbiota in the gastrointestinal tract. Med. Sci. 6, 116 (2018).

    CAS  Google Scholar 

  13. Sensoy, I. A review on the food digestion in the digestive tract and the used in vitro models. Curr. Res. Food Sci. 4, 308–319 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tsang, K. W. & Lam, S.-K. Helicobacter pylori and extra-digestive diseases. J. Gastroenterol. Hepatol. 14, 844–850 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Montoro-Huguet, M. A., Belloc, B. & Domínguez-Cajal, M. Small and large intestine (I): malabsorption of nutrients. Nutrients 13, 1254 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tong, J. W. V., Lingam, P. & Shelat, V. G. Adhesive small bowel obstruction—an update. Acute Med. Surg. 7, e587 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Luna, R. A. et al. Distinct microbiome–neuroimmune signatures correlate with functional abdominal pain in children with autism spectrum disorder. Cell. Mol. Gastroenterol. Hepatol. 3, 218–230 (2017).

    Article  PubMed  Google Scholar 

  20. Chandra, S. et al. Healthy gut, healthy brain: the gut microbiome in neurodegenerative disorders. Curr. Top. Med. Chem. 20, 1142–1153 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Stearns, J. et al. Bacterial biogeography of the human digestive tract. Sci. Rep. 1, 170 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lavelle, A. & Sokol, H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 17, 223–237 (2020).

    Article  PubMed  Google Scholar 

  24. Kalantar-Zadeh, K., Berean, K. J., Burgell, R. E., Muir, J. G. & Gibson, P. R. Intestinal gases: influence on gut disorders and the role of dietary manipulations. Nat. Rev. Gastroenterol. Hepatol. 16, 733–747 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Dave, L. A., Montoya, C. A., Rutherfurd, S. M. & Moughan, P. J. Gastrointestinal endogenous proteins as a source of bioactive peptides-an in silico study. PLoS ONE 9, e98922 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  26. Yang, X. et al. Pathophysiologic role of neurotransmitters in digestive diseases. Front. Physiol. 12, 567650 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Atsawarungruangkit, A., Elfanagely, Y., Asombang, A. W., Rupawala, A. & Rich, H. G. Understanding deep learning in capsule endoscopy: can artificial intelligence enhance clinical practice? Artif. Intell. Gastrointest. Endosc. 1, 33–43 (2020).

    Article  Google Scholar 

  28. Nadimi, E. S. et al. Application of deep learning for autonomous detection and localization of colorectal polyps in wireless colon capsule endoscopy. Comput. Electr. Eng. 81, 106531 (2020).

    Article  Google Scholar 

  29. Moen, S., Vuik, F. E., Kuipers, E. J. & Spaander, M. C. Artificial intelligence in colon capsule endoscopy—a systematic review. Diagnostics 12, 1994 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sahafi, A. et al. Edge artificial intelligence wireless video capsule endoscopy. Sci. Rep. 12, 13723 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Raza, W. Gastroscopic image processing—OpenMV Cam H7. Edge Impulse https://docs.edgeimpulse.com/experts/prototype-and-concept-projects/tinyml-gastroscopic-image-processing (2023).

  32. Qiu, Y. et al. Ultrasound capsule endoscopy with a mechanically scanning micro-ultrasound: a porcine study. Ultrasound Med. Biol. 46, 796–804 (2020).

    Article  PubMed  Google Scholar 

  33. Kimchy, Y. et al. Radiographic capsule-based system for non-cathartic colorectal cancer screening. Abdom. Radiol. 42, 1291–1297 (2016).

    Article  Google Scholar 

  34. Gluck, N. et al. Novel prep-less X-ray imaging capsule for colon cancer screening: a feasibility study. Gut 68, 774–775 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Tabatabaei, N. et al. Tethered confocal endomicroscopy capsule for diagnosis and monitoring of eosinophilic esophagitis. Biomed. Opt. Express 5, 197–207 (2014).

    Article  Google Scholar 

  36. Gora, M. J. et al. Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure. Nat. Med. 19, 238–240 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Qiao, P., Liu, H., Yan, X., Jia, Z. & Pi, X. A smart capsule system for automated detection of intestinal bleeding using HSL color recognition. PLoS ONE 11, e0166488 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Schostek, S. et al. Volunteer case series of a new telemetric sensor for blood detection in the upper gastrointestinal tract: the hemopill. Dig. Dis. Sci. 61, 2956–2962 (2016).

    Article  PubMed  Google Scholar 

  39. Demosthenous, P., Pitris, C. & Georgiou, J. Infrared fluorescence-based cancer screening capsule for the small intestine. IEEE Trans. Biomed. Circuits Syst. 10, 467–476 (2016).

    Article  PubMed  Google Scholar 

  40. Zhu, C., Wen, Y., Liu, T., Yang, H. & Sengupta, K. A packaged ingestible bio-pill with 15-pixel multiplexed fluorescence nucleic-acid sensor and bi-directional wireless interface for in-vivo bio-molecular sensing. In 2020 IEEE Symposium on VLSI Circuits 1–2 (IEEE, 2020).

  41. Singh, S. et al. Sa1717—development of a swallowable diagnostic capsule to monitor gastrointestinal health. Gastroenterology 156, S-376 (2019).

    Article  Google Scholar 

  42. Manickam, A. et al. A fully integrated CMOS fluorescence biochip for DNA and RNA testing. IEEE J. Solid State Circuits 52, 2857–2870 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  43. Machida, T. A study of intragastric pH in patients with peptic ulcer—with special reference to the clinical significance of basal pH value. Gastroenterol. Jpn. 16, 447–458 (1981).

    Article  CAS  PubMed  Google Scholar 

  44. Press, A. et al. Gastrointestinal pH profiles in patients with inflammatory bowel disease. Aliment. Pharmacol. Ther. 12, 673–678 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Maurer, J. M. et al. Gastrointestinal ph and transit time profiling in healthy volunteers using the intellicap system confirms ileo-colonic release of colopulse tablets. PLoS ONE 10, e0129076 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Arefin, M. S., Redouté, J.-M. & Yuce, M. R. Integration of low-power ASIC and mems sensors for monitoring gastrointestinal tract using a wireless capsule system. IEEE J. Biomed. Health Inform. 22, 87–97 (2017).

    Article  PubMed  Google Scholar 

  47. Cheng, C. et al. A wireless, ingestible pH sensing capsule system based on iridium oxide for monitoring gastrointestinal health. Sens. Actuators B 349, 130781 (2021).

    Article  CAS  Google Scholar 

  48. Hasler, W. L. The use of smartpill for gastric monitoring. Expert Rev. Gastroenterol. Hepatol. 8, 587–600 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Caffrey, C. M., Twomey, K. & Ogurtsov, V. Development of a wireless swallowable capsule with potentiostatic electrochemical sensor for gastrointestinal track investigation. Sens. Actuators B 218, 8–15 (2015).

    Article  Google Scholar 

  50. Salama, R., Arshavsky-Graham, S., Sella-Tavor, O., Massad-Ivanir, N. & Segal, E. Design considerations of aptasensors for continuous monitoring of biomarkers in digestive tract fluids. Talanta 239, 123124 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Li, J. et al. A tissue-like neurotransmitter sensor for the brain and gut. Nature 606, 94–101 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim, J. et al. Edible electrochemistry: food materials based electrochemical sensors. Adv. Healthc. Mater. 6, 1700770 (2017).

    Article  Google Scholar 

  53. Montiel, V. et al. Direct electrochemical biosensing in gastrointestinal fluids. Anal. Bioanal. Chem. 411, 4597–4604 (2019).

    Article  Google Scholar 

  54. De la Paz, E. et al. A self-powered ingestible wireless biosensing system for real-time in situ monitoring of gastrointestinal tract metabolites. Nat. Commun. 13, 7405 (2022).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  55. Hafezi, H. et al. An ingestible sensor for measuring medication adherence. IEEE Trans. Biomed. Eng. 62, 99–109 (2015).

    Article  PubMed  Google Scholar 

  56. Flores, G. P. et al. Performance, reliability, usability, and safety of the ID-Cap system for ingestion event monitoring in healthy volunteers: a pilot study. Innov. Clin. Neurosci. 13, 12–19 (2016).

    PubMed  PubMed Central  Google Scholar 

  57. Chai, P. R. et al. Ingestible electronic sensors to measure instantaneous medication adherence: a narrative review. Digit. Health 8, 20552076221083119 (2022).

    PubMed  PubMed Central  Google Scholar 

  58. Ghoreishizadeh, S. S., Taurino, I., De Micheli, G., Carrara, S. & Georgiou, P. A differential electrochemical readout asic with heterogeneous integration of bio-nano sensors for amperometric sensing. IEEE Trans. Biomed. Circuits Syst. 11, 1148–1159 (2017).

    Article  PubMed  Google Scholar 

  59. Herstein, J. J. et al. A pilot study of core body temperatures in healthcare workers wearing personal protective equipment in a high-level isolation unit. J. Occup. Environ. Hyg. 18, 430–435 (2021).

    Article  PubMed  Google Scholar 

  60. O’Brien, C., Hoyt, R. W., Buller, M. J., Castellani, J. W. & Young, A. J. Telemetry pill measurement of core temperature in humans during active heating and cooling. Med. Sci. Sports Exerc. 30, 468–472 (1998).

    Article  PubMed  Google Scholar 

  61. West, M. R., Costello, S., Sol, J. A. & Domitrovich, J. W. Risk for heat-related illness among wildland firefighters: job tasks and core body temperature change. Occup. Environ. Med. 77, 433–438 (2020).

    Article  PubMed  Google Scholar 

  62. Monnard, C. R. et al. Issues in continuous 24-h core body temperature monitoring in humans using an ingestible capsule telemetric sensor. Front. Endocrinol. 8, 130 (2017).

    Article  Google Scholar 

  63. Kalantar-Zadeh, K. et al. A human pilot trial of ingestible electronic capsules capable of sensing different gases in the gut. Nat. Electron. 1, 79–87 (2018).

    Article  Google Scholar 

  64. Mimee, M. et al. An ingestible bacterial-electronic system to monitor gastrointestinal health. Science 360, 915–918 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Inda-Webb, M. et al. Sub-1.4 cm3 capsule for detecting labile inflammatory biomarkers in situ. Nature 620, 386–392 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  66. Inami, A., Kan, T. & Onoe, H. Ingestible wireless capsule sensor made from edible materials for gut bacteria monitoring. In 2022 IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS) 110–113 (IEEE, 2022).

  67. Guozheng, Y., Biao, H. & Peng, Z. Design of battery-less and real-time telemetry system for gastrointestinal applications. In 2007 IEEE International Conference on Control and Automation 245–249 (IEEE, 2007).

  68. Liao, C.-H. et al. An ingestible electronics for continuous and real-time intraabdominal pressure monitoring. J. Pers. Med. 11, 12 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Beardslee, L. A. et al. Blast capsule: an embedded pressure sensing system for internal blast pressure measurement. IEEE Sens. Lett. 5, 1–4 (2021).

    Article  Google Scholar 

  70. Yunus, N. A. M., Halin, I. A., Sulaiman, N., Ismail, N. F. & Sheng, O. K. Valuation on MEMS pressure sensors and device applications. Int. J. Electron. Commun. Eng. 9, 834–842 (2015).

    Google Scholar 

  71. Dagdeviren, C. et al. Flexible piezoelectric devices for gastrointestinal motility sensing. Nat. Biomed. Eng. 1, 807–817 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Dileena, L., Sreeja, S. B. & Sreekala, C. A comparative study on piezoelectric and piezoresistive pressure sensor using comsol simulation. Mater. Today Proc. 46, 3121–3126 (2021).

    Article  CAS  Google Scholar 

  73. Hoang, M. C. et al. A robotic biopsy endoscope with magnetic 5-DOF locomotion and a retractable biopsy punch. Micromachines 11, 98 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Son, D., Gilbert, H. & Sitti, M. Magnetically actuated soft capsule endoscope for fine-needle biopsy. Soft Robot. 7, 10–21 (2020).

    Article  PubMed  Google Scholar 

  75. Yim, S., Gultepe, E., Gracias, D. H. & Sitti, M. Biopsy using a magnetic capsule endoscope carrying, releasing, and retrieving untethered microgrippers. IEEE Trans. Biomed. Eng. 61, 513–521 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Hoang, M. C. et al. Untethered robotic motion and rotating blade mechanism for actively locomotive biopsy capsule endoscope. IEEE Access 7, 93364–93374 (2019).

    Article  Google Scholar 

  77. Finocchiaro, M. et al. Design of a magnetic actuation system for a microbiota-collection ingestible capsule. In 2021 IEEE International Conference on Robotics and Automation (ICRA) 6905–6911 (IEEE, 2021).

  78. Waimin, J. F. et al. Smart capsule for non-invasive sampling and studying of the gastrointestinal microbiome. RSC Adv. 10, 16313–16322 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rezaei Nejad, H. et al. Ingestible osmotic pill for in vivo sampling of gut microbiomes. Adv. Intell. Syst. 1, 1900053 (2019).

    Article  Google Scholar 

  80. Chen, L., Gruzinskyte, L., Jørgensen, S. L., Boisen, A. & Srivastava, S. K. An ingestible self-polymerizing system for targeted sampling of gut microbiota and biomarkers. ACS Nano 14, 12072–12081 (2020).

    Article  CAS  PubMed  Google Scholar 

  81. Shalon, D. et al. Profiling the human intestinal environment under physiological conditions. Nature 617, 581–591 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kong, K., Yim, S., Choi, S. & Jeon, D. A robotic biopsy device for capsule endoscopy. J. Med. Devices 6, 031004 (2012).

    Article  Google Scholar 

  83. Durán-Lobato, M., Niu, Z. & Alonso, M. J. Oral delivery of biologics for precision medicine. Adv. Mater. 32, 1901935 (2020).

    Article  Google Scholar 

  84. Castro, R., Libânio, D., Pita, I. & Dinis-Ribeiro, M. Solutions for submucosal injection: what to choose and how to do it. World J. Gastroenterol. 25, 777 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yamaguchi, D. et al. Colorectal endoscopic mucosal resection with submucosal injection of epinephrine versus hypertonic saline in patients taking antithrombotic agents: propensity-score-matching analysis. BMC Gastroenterol. 19, 1 (2019).

  86. Traverso, G. et al. Microneedles for drug delivery via the gastrointestinal tract. J. Pharm. Sci. 104, 362–367 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Abramson, A. et al. An ingestible self-orienting system for oral delivery of macromolecules. Science 363, 611–615 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. Abramson, A. et al. Oral delivery of systemic monoclonal antibodies, peptides and small molecules using gastric auto-injectors. Nat. Biotechnol. 40, 103–109 (2022).

    Article  CAS  PubMed  Google Scholar 

  89. Abramson, A. et al. A luminal unfolding microneedle injector for oral delivery of macromolecules. Nat. Med. 25, 1512–1518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Our technology. Biograil https://biograil.com/the-technology/(2023).

  91. Aran, K. et al. An oral microjet vaccination system elicits antibody production in rabbits. Sci. Transl. Med. 9, eaaf6413 (2017).

    Article  PubMed  Google Scholar 

  92. Beccani, M. et al. A magnetic drug delivery capsule based on a coil actuation mechanism. Procedia Eng. 120, 53–56 (2015).

    Article  Google Scholar 

  93. Sarker, S. et al. A novel capsule-delivered enteric drug-injection device for delivery of systemic biologics: a pilot study in a porcine model. IEEE Trans. Biomed. Eng. 69, 1870–1879 (2021).

    Article  Google Scholar 

  94. Srinivasan, S. S. et al. Robocap: robotic mucus-clearing capsule for enhanced drug delivery in the gastrointestinal tract. Sci. Robot. 7, eabp9066 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Söderlind, E. et al. Validation of the IntelliCap® system as a tool to evaluate extended release profiles in human GI tract using metoprolol as model drug. J. Control. Release 217, 300–307 (2015).

    Article  PubMed  Google Scholar 

  96. Koo, J. et al. Wirelessly controlled, bioresorbable drug delivery device with active valves that exploit electrochemically triggered crevice corrosion. Sci. Adv. 6, eabb1093 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bal, S. M., Caussin, J., Pavel, S. & Bouwstra, J. A. In vivo assessment of safety of microneedle arrays in human skin. Eur. J. Pharm. Sci. 35, 193–202 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Miller, D. & Niichel, R. Advancing high tech drug delivery systems for the treatment of Crohn’s disease. Gastroenterology 160, S2–S3 (2021).

    Article  Google Scholar 

  99. Dhalla, A. K. et al. A robotic pill for oral delivery of biotherapeutics: safety, tolerability, and performance in healthy subjects. Drug Deliv. Transl. Res. 12, 294–305 (2022).

    Article  CAS  PubMed  Google Scholar 

  100. Schoellhammer, C. M. et al. Ultrasound-mediated gastrointestinal drug delivery. Sci. Transl. Med. 7, 310ra168 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Schoellhammer, C. M., Langer, R. & Traverso, G. Of microneedles and ultrasound: physical modes of gastrointestinal macromolecule delivery. Tissue Barriers 4, e1150235 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Arnold, M. et al. Global burden of 5 major types of gastrointestinal cancer. Gastroenterology 159, 335–349 (2020).

    Article  PubMed  Google Scholar 

  103. A study of high intensity focused ultrasound for cancer of the rectum. Cancer Research UK https://www.cancerresearchuk.org/about-cancer/find-a-clinical-trial/a-study-of-high-intensity-focused-ultrasound-for-cancer-of-the-rectum#undefined (2019).

  104. Li, M., Wan, G., Yu, H. & Xiong, W. High-intensity focused ultrasound inhibits invasion and metastasis of colon cancer cells by enhancing microrna-124-mediated suppression of stat3. FEBS Open Bio 9, 1128–1136 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Stewart, F. et al. Ultrasound mediated delivery of quantum dots from a proof of concept capsule endoscope to the gastrointestinal wall. Sci. Rep. 11, 2584 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rao, S. S., Lembo, A., Chey, W. D., Friedenberg, K. & Quigley, E. M. Effects of the vibrating capsule on colonic circadian rhythm and bowel symptoms in chronic idiopathic constipation. Neurogastroenterol. Motil. 32, e13890 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ron, Y. et al. Safety and efficacy of the vibrating capsule, an innovative non-pharmacological treatment modality for chronic constipation. Neurogastroenterol. Motil. 27, 99–104 (2015).

    Article  CAS  PubMed  Google Scholar 

  108. Nelson, A. D. et al. A single-center, prospective, double-blind, sham-controlled, randomized study of the effect of a vibrating capsule on colonic transit in patients with chronic constipation. Neurogastroenterol. Motil. 29, e13034 (2017).

    Article  Google Scholar 

  109. Yu, J. et al. Safety and efficacy of a new smartphone-controlled vibrating capsule on defecation in beagles. Sci. Rep. 7, 2841 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  110. Miyashita, S. et al. Ingestible, controllable, and degradable origami robot for patching stomach wounds. In 2016 IEEE International Conference on Robotics and Automation (ICRA) 909–916 (IEEE, 2016).

  111. Ponce, J., Quebbemann, B. B. & Patterson, E. J. Prospective, randomized, multicenter study evaluating safety and efficacy of intragastric dual-balloon in obesity. Surg. Obes. Relat. Dis. 9, 290–295 (2013).

    Article  PubMed  Google Scholar 

  112. Kaan, H. L. et al. First-in-man feasibility study of a novel ingestible magnetically inflated balloon capsule for treatment of obesity. Endosc. Int. Open 8, E607–E610 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Freitas, R., Rodrigues, J., Puga, H. & Correia, J. Design, simulation, and fabrication of an ingestible capsule with gastric balloon for obesity treatment. Biomed. Phys. Eng. Express 7, 055024 (2021).

    Article  Google Scholar 

  114. Do, T. N., Seah, T. E. T., Yu, H. K. & Phee, S. J. Development and testing of a magnetically actuated capsule endoscopy for obesity treatment. PLoS ONE 11, e0148035 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Do, T. N., Ho, K. Y. & Phee, S. J. A magnetic soft endoscopic capsule-inflated intragastric balloon for weight management. Sci. Rep. 6, 1–10 (2016).

    Google Scholar 

  116. Phan, P. T. et al. EndoPil: a magnetically actuated swallowable capsule for weight management: development and trials. Ann. Biomed. Eng. 49, 1391–1401 (2021).

    Article  PubMed  Google Scholar 

  117. Cutts, T., Luo, J., Starkebaum, W., Rashed, H. & Abell, T. Is gastric electrical stimulation superior to standard pharmacologic therapy in improving GI symptoms, healthcare resources, and long-term health care benefits? Neurogastroenterol. Motil. 17, 35–43 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Abell, T. L. et al. Effectiveness of gastric electrical stimulation in gastroparesis: results from a large prospectively collected database of national gastroparesis registries. Neurogastroenterol. Motil. 31, e13714 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Abramson, A. et al. Ingestible transiently anchoring electronics for microstimulation and conductive signaling. Sci. Adv. 6, eaaz0127 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  120. Maisiyiti, A. & Chen, J. D. Systematic review on gastric electrical stimulation in obesity treatment. Expert Rev. Med. Devices 16, 855–861 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yao, G. et al. Effective weight control via an implanted self-powered vagus nerve stimulation device. Nat. Commun. 9, 5349 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  122. TSMC MPW full block tapeouts. MUSE SEMICONDUCTOR https://www.musesemi.com/full-block-tapeout-pricing (2022).

  123. Liao, Y.-T., Yao, H., Lingley, A., Parviz, B. & Otis, B. P. A 3-μW CMOS glucose sensor for wireless contact-lens tear glucose monitoring. IEEE J. Solid State Circuits 47, 335–344 (2012).

    Article  ADS  Google Scholar 

  124. FCC Online Table of Frequency Allocations Title 47, Ch. 2, Part 106 (Federal Communications Commission, 2021).

  125. Khaleghi, A. & Balasingham, I. On selecting the frequency for wireless implant communications. In IEEE Loughborough Antennas & Propagation Conference (LAPC) 1–4 (IEEE, 2015).

  126. Liu, Y. & Gitlin, R. D. A phenomenological path loss model of the in vivo wireless channel. In 2015 IEEE 16th Annual Wireless and Microwave Technology Conference (WAMICON) 1–3 (IEEE, 2015).

  127. Faerber, J. et al. In vivo characterization of a wireless telemetry module for a capsule endoscopy system utilizing a conformal antenna. IEEE Trans. Biomed. Circuits Systems 12, 95–105 (2018).

    Article  Google Scholar 

  128. Basir, A., Zada, M., Cho, Y. & Yoo, H. A dual-circular-polarized endoscopic antenna with wideband characteristics and wireless biotelemetric link characterization. IEEE Trans. Antennas Propag. 68, 6953–6963 (2020).

    Article  ADS  Google Scholar 

  129. Christoe, M. J. et al. Meandering pattern 433 MHz antennas for ingestible capsules. IEEE Access 9, 91874–91882 (2021).

    Article  Google Scholar 

  130. Suzan Miah, M., Khan, A. N., Icheln, C., Haneda, K. & Takizawa, K.-I. Antenna system design for improved wireless capsule endoscope links at 433 MHz. IEEE Trans. Antennas Propag. 67, 2687–2699 (2019).

    Article  ADS  Google Scholar 

  131. Lei, W. & Guo, Y.-X. Design of a dual-polarized wideband conformal loop antenna for capsule endoscopy systems. IEEE Trans. Antennas Propag. 66, 5706–5715 (2018).

    Article  ADS  Google Scholar 

  132. Song, M. et al. A millimeter-scale crystal-less MICS transceiver for insertable smart pills. IEEE Trans. Biomed. Circuits Syst. 14, 1218–1229 (2020).

    Article  PubMed  Google Scholar 

  133. Abdigazy, A. & Monge, M. A bimodal low-power transceiver featuring a ring oscillator-based transmitter and magnetic field-based receiver for insertable smart pills. IEEE Solid State Circuits Lett. 5, 154–157 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Mondal, S. & Hall, D. A. A 67-μW ultra-low power PVT-robust MedRadio transmitter. In 2020 IEEE Radio Frequency Integrated Circuits Symposium (RFIC) 327–330 (IEEE, 2020).

  135. Shi, Y., Chen, X., Kim, H.-S., Blaauw, D. & Wentzloff, D. 28.3 a 606μW mm-scale bluetooth low-energy transmitter using co-designed 3.5 × 3.5 mm 2 loop antenna and transformer-boost power oscillator. In 2019 IEEE International Solid-State Circuits Conference (ISSCC) 442–444 (IEEE, 2019).

  136. Shibata, K. et al. A 22nm 0.84 mm 2 BLE transceiver with self IQ-phase correction achieving 39dB image rejection and on-chip antenna impedance tuning. In 2022 IEEE International Solid-State Circuits Conference (ISSCC) Vol. 65, 398–400 (IEEE, 2022).

  137. Ba, A. et al. A 0.33 nJ/bit IEEE802. 15.6/proprietary MICS/ISM wireless transceiver with scalable data rate for medical implantable applications. IEEE J. Biomed. Health Inform. 19, 920–929 (2015).

    Article  PubMed  Google Scholar 

  138. Jang, J., Bae, J. & Yoo, H.-J. Understanding body channel communication: a review: from history to the future applications. In 2019 IEEE Custom Integrated Circuits Conference (CICC) 1–8 (IEEE, 2019).

  139. Jang, J. et al. A four-camera VGA-resolution capsule endoscope system with 80-mB/s body channel communication transceiver and sub-centimeter range capsule localization. IEEE J. Solid State Circuits 54, 538–549 (2018).

    Article  ADS  Google Scholar 

  140. Chang, T. C., Wang, M. L., Charthad, J., Weber, M. J. & Arbabian, A. 27.7 A 30.5mm3 fully packaged implantable device with duplex ultrasonic data and power links achieving 95kb/s with <10−4 BER at 8.5cm depth. In 2017 IEEE International Solid-State Circuits Conference (ISSCC) 460–461 (IEEE, 2017).

  141. Zhang, Y. & Shepard, K. L. A 0.6-mm2 powering and data telemetry system compatible with ultrasound B-mode imaging for freely moving biomedical sensor systems. In 2019 IEEE Custom Integrated Circuits Conference (CICC) 1–4 (IEEE, 2019).

  142. Sonmezoglu, S. & Maharbiz, M. M. 34.4 A 4.5mm3 deep-tissue ultrasonic implantable luminescence oxygen sensor. In 2020 IEEE International Solid-State Circuits Conference (ISSCC) 454–456 (IEEE, 2020).

  143. Chuo, L.-X. et al. 7.4 A 915MHz asymmetric radio using Q-enhanced amplifier for a fully integrated 3 × 3 × 3mm3 wireless sensor node with 20m non-line-of-sight communication. In 2017 IEEE International Solid-State Circuits Conference (ISSCC) 132–133 (IEEE, 2017).

  144. Chen, Y. et al. A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards. J. Energy Chem. 59, 83–99 (2021).

    Article  ADS  CAS  Google Scholar 

  145. Le, S. et al. Status of zinc–silver battery. J. Electrochem. Soc. 166, A2980 (2019).

    Article  CAS  Google Scholar 

  146. Ciuti, G., Menciassi, A. & Dario, P. Capsule endoscopy: from current achievements to open challenges. IEEE Rev. Biomed. Eng. 4, 59–72 (2011).

    Article  PubMed  Google Scholar 

  147. Li, C. et al. An advance review of solid-state battery: challenges, progress and prospects. Sustain. Mater. Technol. 29, e00297 (2021).

    CAS  Google Scholar 

  148. Kumar, P. et al. Melanin-based flexible supercapacitors. J. Mater. Chem. C 4, 9516–9525 (2016).

    Article  CAS  Google Scholar 

  149. Mittal, N., Ojanguren, A., Niederberger, M. & Lizundia, E. Degradation behavior, biocompatibility, electrochemical performance, and circularity potential of transient batteries. Adv. Sci. 8, 2004814 (2021).

    Article  CAS  Google Scholar 

  150. Chen, Y. et al. Physical–chemical hybrid transiency: a fully transient Li-ion battery based on insoluble active materials. J. Polym. Sci. B 54, 2021–2027 (2016).

    Article  CAS  Google Scholar 

  151. Kutbee, A. T. et al. Flexible and biocompatible high-performance solid-state micro-battery for implantable orthodontic system. npj Flex. Electron. 1, 7 (2017).

    Article  Google Scholar 

  152. Li, N., Chen, Z., Ren, W., Li, F. & Cheng, H.-M. Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proc. Natl Acad. Sci. USA 109, 17360–17365 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  153. Aeby, X., Poulin, A., Siqueira, G., Hausmann, M. K. & Nyström, G. Fully 3D printed and disposable paper supercapacitors. Adv. Mater. 33, 2101328 (2021).

    Article  CAS  Google Scholar 

  154. Crespilho, F. N. et al. Non-corrosive, low-toxicity gel-based microbattery from organic and organometallic molecules. J. Mater. Chem. A 7, 24784–24787 (2019).

    Article  CAS  Google Scholar 

  155. Liu, L., Towfighian, S. & Jin, Z. A cylindrical triboelectric energy harvester for capsule endoscopes. In 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS) 1–4 (IEEE, 2015).

  156. Yoshida, S., Miyaguchi, H. & Nakamura, T. Development of ingestible thermometer with built-in coil antenna charged by gastric acid battery and demonstration of long-time in vivo telemetry. IEEE Access 9, 102368–102377 (2021).

    Article  Google Scholar 

  157. Dong, K. et al. Microbial fuel cell as power supply for implantable medical devices: a novel configuration design for simulating colonic environment. Biosens. Bioelectron. 41, 916–919 (2013).

    Article  CAS  PubMed  Google Scholar 

  158. Han, Y., Yu, C. & Liu, H. A microbial fuel cell as power supply for implantable medical devices. Biosens. Bioelectron. 25, 2156–2160 (2010).

    Article  CAS  PubMed  Google Scholar 

  159. Zhao, L., Annayev, M., Oralkan, Ö. & Jia, Y. An ultrasonic energy harvesting IC providing adjustable bias voltage for pre-charged CMUT. IEEE Trans. Biomed. Circuits Systems 16, 842–851 (2022).

    Article  Google Scholar 

  160. Abid, A. et al. Wireless power transfer to millimeter-sized gastrointestinal electronics validated in a swine model. Sci. Rep. 7, 46745 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  161. Iqbal, A., Sura, P. R., Al-Hasan, M., Mabrouk, I. B. & Denidni, T. A. Wireless power transfer system for deep-implanted biomedical devices. Sci. Rep. 12, 13689 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ingestible Telemetric Gastrointestinal Capsule Imaging System—Final Class II Special Controls Guidance Document for Industry and FDA (US FDA, 2001); https://www.fda.gov/medical-devices/guidance-documents-medical-devices-and-radiation-emitting-products/ingestible-telemetric-gastrointestinal-capsule-imaging-system-final-class-ii-special-controls

  163. General Considerations for Animal Studies Intended to Evaluate Medical Devices (US FDA, 2023); https://www.fda.gov/regulatory-information/search-fda-guidance-documents/general-considerations-animal-studies-intended-evaluate-medical-devices

  164. Wang, Y.-C. et al. Adverse events of video capsule endoscopy over the past two decades: a systematic review and proportion meta-analysis. BMC Gastroenterol. 20, 364 (2020).

  165. Lee, S. Y., Lee, J. Y., Lee, Y. J. & Park, K. S. Natural elimination of a video capsule after retention for 1 year in a patient with small bowel crohn disease: a case report. Medicine 98, e17580 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Saad, M. K., Fiani, E., El Hajj, I. & Saikaly, E. A rare complication of capsule endoscopy, retained in diverticula: a report of two cases. Int. J. Gastrointest. Interv. 10, 36–39 (2021).

    Article  Google Scholar 

  167. Inui, T., Koga, H., Nogi, M., Komoda, N. & Suganuma, K. A miniaturized flexible antenna printed on a high dielectric constant nanopaper composite. Adv. Mater. 27, 1112–1116 (2015).

    Article  CAS  PubMed  Google Scholar 

  168. Rai, T., Dantes, P., Bahreyni, B. & Kim, W. S. A stretchable RF antenna with silver nanowires. IEEE Electron Device Lett. 34, 544–546 (2013).

    Article  ADS  CAS  Google Scholar 

  169. Tsang, M. et al. A MEMS-enabled biodegradable battery for powering transient implantable devices. In 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS) 358–361 (IEEE, 2014).

  170. Hu, L., Wu, H., La Mantia, F., Yang, Y. & Cui, Y. Thin, flexible secondary Li-ion paper batteries. ACS Nano 4, 5843–5848 (2010).

    Article  CAS  PubMed  Google Scholar 

  171. Bonacchini, G. E. et al. Tattoo-paper transfer as a versatile platform for all-printed organic edible electronics. Adv. Mater. 30, 1706091 (2018).

    Article  Google Scholar 

  172. Kang, S.-K., Koo, J., Lee, Y. K. & Rogers, J. A. Advanced materials and devices for bioresorbable electronics. Acc. Chem. Res. 51, 988–998 (2018).

    Article  CAS  PubMed  Google Scholar 

  173. Umay, I., Fidan, B. & Barshan, B. Localization and tracking of implantable biomedical sensors. Sensors 17, 583 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  174. Wang, M. L., Chang, T. C. & Arbabian, A. Ultrasonic implant localization for wireless power transfer: active uplink and harmonic backscatter. In 2019 IEEE International Ultrasonics Symposium (IUS) 818–821 (IEEE, 2019).

  175. Chen, H., Rogalski, M. M. & Anker, J. N. Advances in functional X-ray imaging techniques and contrast agents. Phys. Chem. Chem. Phys. 14, 13469–13486 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Koziolek, M. et al. Investigation of pH and temperature profiles in the GI tract of fasted human subjects using the IntelliCap® system. J. Pharm. Sci. 104, 2855–2863 (2015).

    Article  CAS  PubMed  Google Scholar 

  177. Ye, Y., Khan, U. & Pahlavan, K. Accuracy bounds for RSS and TOA based RF localization in capsule endoscopy. In Proc. 33rd IEEE Annual International Conference of Engineering in Medicine and Biology Society (EMBC) 5602–5607 (IEEE, 2011).

  178. Vasisht, D. et al. In-body backscatter communication and localization. In Proc. 2018 Conference of the ACM Special Interest Group on Data Communication 132–146 (ACM, 2018).

  179. Chen, F., Liu, J. & Liao, H. 3D catheter shape determination for endovascular navigation using a two-step particle filter and ultrasound scanning. IEEE Trans. Med. Imaging 36, 685–695 (2017).

    Article  PubMed  Google Scholar 

  180. Parent, F. et al. Intra-arterial image guidance with optical frequency domain reflectometry shape sensing. IEEE Trans. Med. Imaging 38, 482–492 (2019).

    Article  PubMed  Google Scholar 

  181. Hu, C., Meng, M.-H. & Mandal, M. Efficient linear algorithm for magnetic localization and orientation in capsule endoscopy. In 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference 7143–7146 (IEEE, 2005).

  182. Hu, C. et al. A cubic 3-axis magnetic sensor array for wirelessly tracking magnet position and orientation. IEEE Sens. J. 10, 903–913 (2010).

    Article  ADS  Google Scholar 

  183. Gao, H., Lin, Y. & Monge, M. Towards magnetic field gradient-based imaging and control of in-body devices. In 2021 IEEE Biomedical Circuits and Systems Conference (BioCAS) 1–4 (IEEE, 2021).

  184. Rustom, M. & Sideris, C. Wireless frequency-division multiplexed 3D magnetic localization for low power sub-mm precision capsule endoscopy. In 2022 IEEE Custom Integrated Circuits Conference (CICC) 01–02 (IEEE, 2022).

  185. Rustom, M. & Sideris, C. Design and implementation of a low power wireless frequency-division multiplexed magnetic 3D localization scheme with sub-mm precision for capsule endoscopy applications. IEEE Solid State Circuits Lett. 6, 37–40 (2023).

    Article  Google Scholar 

  186. Sharma, S. et al. Location-aware ingestible microdevices for wireless monitoring of gastrointestinal dynamics. Nat. Electron. 6, 242–256 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Carta, R. et al. Wireless powering for a self-propelled and steerable endoscopic capsule for stomach inspection. Biosens. Bioelectron. 25, 845–851 (2009).

    Article  CAS  PubMed  Google Scholar 

  188. Liang, H., Guan, Y., Xiao, Z., Hu, C. & Liu, Z. A screw propelling capsule robot. In 2011 IEEE International Conference on Information and Automation 786–791 (IEEE, 2011).

  189. Wang, K., Yan, G., Ma, G. & Ye, D. An earthworm-like robotic endoscope system for human intestine: design, analysis, and experiment. Ann. Biomed. Eng. 37, 210–221 (2009).

    Article  PubMed  Google Scholar 

  190. Chen, Z., Liu, J., Wang, S. & Zuo, S. A bio-inspired self-propelling endoscopic device for inspecting the large intestine. Bioinspir. Biomim. 14, 066013 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  191. Kim, H. M. et al. Active locomotion of a paddling-based capsule endoscope in an in vitro and in vivo experiment (with videos). Gastrointest. Endosc. 72, 381–387 (2010).

    Article  ADS  PubMed  Google Scholar 

  192. Valdastri, P. et al. A new mechanism for mesoscale legged locomotion in compliant tubular environments. IEEE Trans. Robot. 25, 1047–1057 (2009).

    Article  Google Scholar 

  193. Mosse, C., Mills, T. N., Appleyard, M. N., Kadirkamanathan, S. S. & Swain, C. Electrical stimulation for propelling endoscopes. Gastrointest. Endosc. 54, 79–83 (2001).

    Article  CAS  PubMed  Google Scholar 

  194. Woo, S. H., Kim, T. W., Mohy-Ud-Din, Z., Park, I. Y. & Cho, J.-H. Small intestinal model for electrically propelled capsule endoscopy. Biomed. Eng. Online 10, 108 (2011).

  195. Keller, J. et al. Inspection of the human stomach using remote-controlled capsule endoscopy: a feasibility study in healthy volunteers (with videos). Gastrointest. Endosc. 73, 22–28 (2011).

    Article  ADS  PubMed  Google Scholar 

  196. Rey, J.-F. et al. Blinded nonrandomized comparative study of gastric examination with a magnetically guided capsule endoscope and standard videoendoscope. Gastrointest. Endosc. 75, 373–381 (2012).

    Article  ADS  PubMed  Google Scholar 

  197. Schostek, S. et al. Telemetric real-time sensor for the detection of acute upper gastrointestinal bleeding. Biosens. Bioelectron. 78, 524–529 (2016).

    Article  CAS  PubMed  Google Scholar 

  198. Zhuang, Z. et al. Alterations of the gut microbiota and plasma biomarkers in Parkinson’s disease. Parkinsonism Relat. Disord. 81, 179–184 (2020).

    Google Scholar 

  199. Kang, D.-W. et al. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome 7, 10 (2019).

Download references

Acknowledgements

Y.K. acknowledges support from USC Viterbi School of Engineering.

Author information

Authors and Affiliations

Authors

Contributions

A. Abdigazy, M.A. and Y.K. conceptualized and wrote the review paper. G.L., C.S. and A. Abramson provided feedback and suggestions.

Corresponding author

Correspondence to Yasser Khan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Azita Emami, Santosh Pandey and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdigazy, A., Arfan, M., Lazzi, G. et al. End-to-end design of ingestible electronics. Nat Electron 7, 102–118 (2024). https://doi.org/10.1038/s41928-024-01122-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-024-01122-2

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research