Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Homojunction-loaded inverters based on self-biased molybdenum disulfide transistors for sub-picowatt computing

Abstract

As transistors are scaled to smaller dimensions, their static power increases. Combining two-dimensional (2D) channel materials with complementary metal–oxide–semiconductor (CMOS) logic architectures could be an effective solution to this issue because of the excellent field-effect properties of 2D materials. However, 2D materials have limited polarity control. Here we report a pseudo-CMOS architecture for sub-picowatt logic computing that uses self-biased molybdenum disulfide transistors. The transistors have a gapped channel that forms a tunable barrier—thus circumventing the polarity control of 2D materials—and exhibit a reverse-saturation current below 1 pA with high reliability and endurance. We use the devices to make homojunction-loaded inverters with good rail-to-rail operation at a switching threshold voltage of around 0.5 V, a static power of a few picowatts, a dynamic delay time of around 200 µs, a noise margin of more than 90% and a peak voltage gain of 241. We also fabricate fundamental gate circuits on the basis of this pseudo-CMOS configuration by cascading several devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of the pseudo-CMOS inverter with CMOS and pseudo-NMOS configurations on the basis of 2D materials.
Fig. 2: Structure and characterization of the homojunction.
Fig. 3: Static and dynamic characteristics of the pseudo-CMOS inverter.
Fig. 4: Comparison of the static and dynamic characteristics of the pseudo-CMOS and pseudo-NMOS inverters.
Fig. 5: Pseudo-CMOS logic gates on the basis of monolayer MoS2 continuous film.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other data that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. Rupp, K. et al. 42 years of microprocessor trend data. Karl Rupp www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/ (2018).

  2. International Roadmap for Devices and Systems (IRDS) 2022 Edition—More Moore (IEEE, 2022); https://irds.ieee.org/images/files/pdf/2022/2022IRDS_MM.pdf

  3. CMOS, the Ideal Logic Family (Fairchild Semiconductor, 1983).

  4. Henzler, S. Power Management of Digital Circuits in Deep Sub-Micron CMOS Technologies (Springer-Verlag, 2006).

  5. Rawat, A., Gupta, A. K. & Rawat, B. Performance projection of 2D material-based CMOS inverters for sub-10-nm channel length. IEEE Trans. Electron Devices 68, 3622–3629 (2021).

    Article  ADS  CAS  Google Scholar 

  6. Kim, N. S. et al. Leakage current: Moore’s law meets static power. Computer 36, 68–75 (2003).

    Article  Google Scholar 

  7. Radisavljevic, B. et al. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Desai, S. B. et al. MoS2 transistors with 1-nanometer gate lengths. Science 354, 99–102 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Xiao, J. et al. Record-high saturation current in end-bond contacted monolayer MoS2 transistors. Nano Res. 15, 475–481 (2022).

    Article  ADS  CAS  Google Scholar 

  10. Wu, F. et al. Vertical MoS2 transistors with sub-1-nm gate lengths. Nature 603, 259–264 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Liu, Y. et al. Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Asenov, A. et al. Simulation of intrinsic parameter fluctuations in decananometer and nanometer-scale MOSFETs. IEEE Trans. Electron Devices 50, 1837–1852 (2003).

    Article  ADS  CAS  Google Scholar 

  13. Liu, C. et al. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 15, 545–557 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Kong, L., Chen, Y. & Liu, Y. Recent progresses of NMOS and CMOS logic functions based on two-dimensional semiconductors. Nano Res. 14, 1768–1783 (2021).

    Article  CAS  Google Scholar 

  15. Pal, A. et al. Two-dimensional materials enabled next-generation low-energy compute and connectivity. MRS Bull. 46, 1211–1228 (2021).

    Article  ADS  Google Scholar 

  16. Zhu, K. et al. The development of integrated circuits based on two-dimensional materials. Nat. Electron. 4, 775–785 (2021).

    Article  CAS  Google Scholar 

  17. Kong, L. et al. Doping-free complementary WSe2 circuit via van der Waals metal integration. Nat. Commun. 11, 1866 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pan, C. et al. Reconfigurable logic and neuromorphic circuits based on electrically tunable two-dimensional homojunctions. Nat. Electron. 3, 383–390 (2020).

    Article  CAS  Google Scholar 

  19. Resta, G. V. et al. Doping-free complementary logic gates enabled by two-dimensional polarity-controllable transistors. ACS Nano 12, 7039–7047 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Qi, D. et al. Continuously tuning electronic properties of few-layer molybdenum ditelluride with in situ aluminum modification toward ultrahigh gain complementary inverters. ACS Nano 13, 9464–9472 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Lim, J. Y. et al. Homogeneous 2D MoTe2 p-n Junctions and CMOS inverters formed by atomic-layer-deposition-induced doping. Adv. Mater. 29, 1701798 (2017).

    Article  Google Scholar 

  22. Pezeshki, A. et al. Static and dynamic performance of complementary inverters based on nanosheet alpha-MoTe2 p-channel and MoS2 n-channel transistors. ACS Nano 10, 1118–1125 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, H. et al. Complementary logic with voltage zero-loss and nano-watt power via configurable MoS2/WSe2 gate. Adv. Funct. Mater. 28, 1805171 (2018).

    Article  Google Scholar 

  24. Wachter, S. et al. A microprocessor based on a two-dimensional semiconductor. Nat. Commun. 8, 14948 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lin, Z. et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 562, 254–258 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Chen, X. et al. Wafer-scale functional circuits based on two dimensional semiconductors with fabrication optimized by machine learning. Nat. Commun. 12, 5953 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mak, K. F. et al. Tightly bound trions in monolayer MoS2. Nat. Mater. 12, 207–211 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Zhang, X. et al. Near-ideal van der Waals rectifiers based on all-two-dimensional Schottky junctions. Nat. Commun. 12, 1522 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jin, Y. et al. A van der Waals homojunction: ideal p-n diode behavior in MoSe2. Adv. Mater. 27, 5534–5540 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Huang, M. et al. Multifunctional high-performance van der Waals heterostructures. Nat. Nanotechnol. 12, 1148–1154 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Li, M. Y. et al. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science 349, 524–528 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Zhang, X. et al. Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode. Nat. Commun. 8, 15881 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Baker, R. J. CMOS: Circuit Design, Layout, and Simulation (Wiley, 2019).

  34. Chuang, M.-H. et al. Integrated low-dimensional semiconductors for scalable low-power CMOS logic. Adv. Funct. Mater. 33, 2212722 (2023).

  35. Jeon, P. J. et al. Low power consumption complementary inverters with n-MoS2 and p-WSe2 dichalcogenide nanosheets on glass for logic and light-emitting diode circuits. ACS Appl Mater. Interfaces 7, 22333–22340 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Wang, X. et al. Pass-transistor logic circuits based on wafer-scale 2D semiconductors. Adv. Mater. 34, 2202472 (2022).

    Article  CAS  Google Scholar 

  37. Ding, L. et al. CMOS-based carbon nanotube pass-transistor logic integrated circuits. Nat. Commun. 3, 677 (2012).

    Article  ADS  PubMed  Google Scholar 

  38. Li, N. et al. Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nat. Electron. 3, 711–717 (2020).

    Article  CAS  Google Scholar 

  39. Gao, L. et al. Defect-engineered atomically thin MoS2 homogeneous electronics for logic inverters. Adv. Mater. 32, 1906646 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China under grant nos. 2022YFA1203800 (Z.Z.), 2022YFA1203803 (Z.Z.), 2018YFA0703503 (Y.Z.), 2023YFF1500400 (Y.Z.) and 2023YFF1500401 (X.Z.); the National Natural Science Foundation of China under grant nos. 51991340 (Y.Z.), 51991342 (Y.Z.), 52225206 (Z.Z.), 92163205 (Z.Z.), 52188101 (Y.Z.), 62322402 (X.Z.), 62204012 (X.Z.), 52250398 (X.Z.), 51972022 (Z.Z.), 52303362 (L.G.) and 62304019 (H.Y.); the Frontier Cross Research Project of the Department of Chinese Academy of Sciences under grant no. XK2023JSA001 (Y.Z.); the Beijing Nova Program under grant nos. 20220484145 (X.Z.) and 20230484478 (X.Z.); the Fundamental Research Funds for the Central Universities under grant no. FRF-06500207 (X.Z.); and the State Key Lab for Advanced Metals and Materials under grant no. 2023-Z05 (Z.Z.). We thank Y. Liu at Hunan University and Y. Yu at Southern University of Science and Technology for constructive discussions.

Author information

Authors and Affiliations

Authors

Contributions

X.W., Z.Z. and Y.Z. initiated and supervised the project. X.W., X.Z., Z.K. and Z.Z. designed the experiments. X.W. and X.Z. performed device fabrication, data collection and analysis. L.G. and Z.C. assisted in the preparation and characterization of monolayer MoS2 by CVD. H.Y. and M.H. assisted in performing in situ characterization experiments. W.T., L.G. and H.Y. assisted in the device performance measurement and data analysis. X.W., X.Z., Z.K. and Z.Z. cowrote the paper. All authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Zhuo Kang, Zheng Zhang or Yue Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Michael Waltl, Xiangbin Zeng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17, Table 1 and references.

Source data

Source Data Fig. 1

Source data for Fig. 1e.

Source Data Fig. 2

Source data for Fig. 2c–e.

Source Data Fig. 3

Source data for Fig. 3c–h.

Source Data Fig. 4

Source data for Fig. 4c–h.

Source Data Fig. 5

Source data for Fig. 5b–g.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Zhang, X., Yu, H. et al. Homojunction-loaded inverters based on self-biased molybdenum disulfide transistors for sub-picowatt computing. Nat Electron 7, 138–146 (2024). https://doi.org/10.1038/s41928-023-01112-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-023-01112-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing