Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Thin-film transistors for large-area electronics

Abstract

Thin-film transistors (TFTs) are a key technology in large-area electronics and can be manufactured uniformly over large areas—on glass or flexible substrates—at lower processing temperatures and costs than complementary metal–oxide–semiconductor (CMOS)-based transistors. The transistors are used in established applications such as flat-panel displays and X-ray detectors, and are of potential use in a range of emerging applications. Here we discuss the development of TFTs for large-area electronics. We explore the use of TFTs—which can be based on hydrogenated amorphous silicon, low-temperature polycrystalline silicon, amorphous oxide semiconductors and organic semiconductors—in displays and sensors, as well as digital circuits and memory. We also consider their potential use in emerging applications such as neuromorphic computing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Atomic arrangement, band structure and device structure of crystalline silicon, amorphous silicon and amorphous oxide transistors.
Fig. 2: Schematic diagrams of TFTs in display and image sensors.
Fig. 3: Instability issue as a sign of Vth shift after long-term bias stressing, improving strategies from composition change to double channel.
Fig. 4: Representative works in non-display applications of TFTs.

Similar content being viewed by others

References

  1. Weber, L. F. History of the plasma display panel. IEEE Trans. Plasma Sci. 34, 268–278 (2006).

    Google Scholar 

  2. Kamiya, T., Nomura, K. & Hosono, H. Present status of amorphous In-Ga-Zn-O thin-film transistors. Sci. Technol. Adv. Mater. https://doi.org/10.1088/1468-6996/11/4/044305 (2010).

  3. Trinh, T. T. et al. Improvement in the performance of an InGaZnO thin-film transistor by controlling interface trap densities between the insulator and active layer. Semicond. Sci. Technol. 26, 085012 (2011).

    Google Scholar 

  4. Choi, B.-D. et al. Stability enhancement of polysilicon thin-film transistors using stacked plasma-enhanced chemical vapor deposited SiO2/SiNx gate dielectric. Jpn J. Appl. Phys. 44, 6417 (2005).

  5. Mukhopadhyaya, K. & Srividya, P. Trends in performance characteristics and modelling of oxide based TFT. Mater. Today Proc 55, 414–418 (2022).

    Google Scholar 

  6. Zhao, K. et al. Room-temperature fabrication of high-quality lanthanum oxide high-κ dielectric films by a solution process for low-power soft electronics. Adv. Electron. Mater. 5, 1900427 (2019).

    Google Scholar 

  7. Wang, B. et al. High-k gate dielectrics for emerging flexible and stretchable electronics. Chem. Rev. 118, 5690–5754 (2018).

    Google Scholar 

  8. Borchert, J. W. et al. Flexible low-voltage high-frequency organic thin-film transistors. Sci. Adv. 6, eaaz5156 (2020).

    Google Scholar 

  9. Cai, W. et al. Significant performance improvement of oxide thin-film transistors by a self-assembled monolayer treatment. Adv. Electron. Mater. 6, 1901421 (2020).

    Google Scholar 

  10. Brody, T. P., Asars, J. A. & Dixon, G. D. A 6 × 6 inch 20 lines-per-inch liquid-crystal display panel. IEEE Trans. Electron Devices 20, 995–1001 (1973).

    Google Scholar 

  11. Chen, H.-W., Lee, J.-H., Lin, B.-Y., Chen, S. & Wu, S.-T. Liquid crystal display and organic light-emitting diode display: present status and future perspectives. Light Sci. Appl. 7, 17168 (2018).

    Google Scholar 

  12. Choi, S. et al. Thin-film transistor-driven vertically stacked full-color organic light-emitting diodes for high-resolution active-matrix displays. Nat. Commun. 11, 2732 (2020).

    Google Scholar 

  13. Nakamura, T. et al. Incorporation of input function into displays using LTPS TFT technology. J. Soc. Inf. Disp. 14, 363–369 (2006).

    Google Scholar 

  14. Tu, H.-Y. et al. Analysis of negative bias temperature instability degradation in p-type low-temperature polycrystalline silicon thin-film transistors of different grain sizes. IEEE Electron Device Lett. 40, 1768–1771 (2019).

    Google Scholar 

  15. Kuo, Y. Thin film transistor technology—past, present and future. Electrochem. Soc. Interface 22, 55 (2013).

    Google Scholar 

  16. Inoue, H. et al. Nonvolatile memory with extremely low-leakage indium-gallium-zinc-oxide thin-film transistor. IEEE J. Solid State Circuits 47, 2258–2265 (2012).

    Google Scholar 

  17. Shiah, Y.-S. et al. Mobility–stability trade-off in oxide thin-film transistors. Nat. Electron. 4, 800–807 (2021).

    Google Scholar 

  18. Huh, J.-Y. et al. Effects of the composition of sputtering target on the stability of InGaZnO thin film transistor. Thin Solid Films 519, 6868–6871 (2011).

    Google Scholar 

  19. Ide, K., Nomura, K., Hosono, H. & Kamiya, T. Electronic defects in amorphous oxide semiconductors: a review. Phys. Status Solidi (a) 216, 1800372 (2019).

    Google Scholar 

  20. Kim, S. I. et al. High performance oxide thin film transistors with double active layers. In Proc. IEEE International Electron Devices Meeting (IEDM) (ed. Hiramoto, T.) 1–4 (IEEE, 2008).

  21. Street, R., Wong, W., Ng, T. & Lujan, R. Amorphous silicon thin film transistor image sensors. Phil. Mag. 89, 2687–2697 (2009).

  22. Yaffe, M. & Rowlands, J. X-ray detectors for digital radiography. Phys. Med. Biol. 42, 1–39 (1997).

    Google Scholar 

  23. Tordera, D. et al. A high-resolution thin-film fingerprint sensor using a printed organic photodetector. Adv. Mater. Technol. 4, 1900651 (2019).

    Google Scholar 

  24. Shim, G. W. et al. TFT channel materials for display applications: from amorphous silicon to transition metal dichalcogenides. Adv. Mater. 32, 1907166 (2020).

    Google Scholar 

  25. Mainguet, J. et al. A large-area curved pyroelectric fingerprint sensor. In Proc. 2019 IEEE International Electron Devices Meeting (IEDM) (ed. De Salvo, B.) 26.25.1–26.25.4 (IEEE, 2019).

  26. Fan, C.-L., Chen, Y.-C., Yang, C.-C., Tsai, Y.-K. & Huang, B.-R. Novel LTPS-TFT pixel circuit with OLED luminance compensation for 3D AMOLED displays. J. Disp. Technol. 12, 425–428 (2016).

    Google Scholar 

  27. Verschueren, L. et al. External compensation for high-resolution active matrix organic light‐emitting diode displays. J. Soc. Inf. Disp. 29, 511–525 (2021).

    Google Scholar 

  28. Chaji, G. R. et al. Stable RGBW AMOLED display with OLED degradation compensation using electrical feedback. In Proc. 2010 IEEE International Solid-State Circuits Conference (ISSCC) (ed. Fujino, L.) 118–119 (IEEE, 2010).

  29. De Roose, F. et al. 16.5 A flexible thin-film pixel array with a charge-to-current gain of 59 µA/pC and 0.33% nonlinearity and a cost effective readout circuit for large-area X-ray imaging. In Proc. 2016 IEEE International Solid-State Circuits Conference (ISSCC) (ed. Fujino, L.) 296–297 (IEEE, 2016).

  30. Wang, K., Ou, H. & Chen, J. Dual-gate photosensitive thin-film transistor-based active pixel sensor for indirect-conversion X-ray imaging. IEEE Trans. Electron Devices 62, 2894–2899 (2015).

    Google Scholar 

  31. Antonuk, L. E. et al. Development of thin-film flat-panel arrays for diagnostic and radiotherapy imaging. In Medical Imaging VI: Instrumentation (ed. Shaw, R.) 94–105 (SPIE, 1992).

  32. Moy, T. et al. An EEG acquisition and biomarker-extraction system using low-noise-amplifier and compressive-sensing circuits based on flexible, thin-film electronics. IEEE J. Solid State Circuits 52, 309–321 (2016).

    Google Scholar 

  33. Sugiyama, M. et al. An ultraflexible organic differential amplifier for recording electrocardiograms. Nat. Electron. 2, 351–360 (2019).

    Google Scholar 

  34. Jiang, C., Cheng, X. & Nathan, A. Flexible ultralow-power sensor interfaces for e-skin. Proc. IEEE 107, 2084–2105 (2019).

    Google Scholar 

  35. Lee, S. & Nathan, A. Subthreshold Schottky-barrier thin-film transistors with ultralow power and high intrinsic gain. Science 354, 302–304 (2016).

    Google Scholar 

  36. Zhou, X. et al. Low-temperature-processed power Schottky diode based on amorphous indium-tin-zinc-oxide/indium-gallium-zinc-oxide bilayer. IEEE Trans. Electron Devices 66, 4759–4763 (2019).

    Google Scholar 

  37. Li, H. et al. P-16.3: a tactile sensor interface formed by two TFTs and one capacitor to enable dynamic and static force sensing. In SID Symposium Digest of Technical Papers (ed. Donela, J.) 1067–1070 (Wiley, 2021).

  38. Tai, Y.-H. et al. Light-controlled gap-type TFT used for large-area under-screen fingerprint sensor. IEEE J. Electron Devices Soc. 9, 517–520 (2021).

    Google Scholar 

  39. Ou, H. et al. Dual-gate photosensitive FIN-TFT with high photoconductive gain and near-UV to near-IR responsivity. In Proc. 2016 IEEE International Electron Devices Meeting (IEDM) (ed. Takayanagi, M.) 32.35.1–32.35.4 (IEEE, 2016).

  40. Ahn, S. E. et al. Metal oxide thin film phototransistor for remote touch interactive displays. Adv. Mater. 24, 2631–2636 (2012).

    Google Scholar 

  41. Tang, W., Zhao, J., Li, Q. & Guo, X. Highly sensitive low power ion-sensitive organic thin-film transistors. In Proc. 2018 9th International Conference on Computer Aided Design for Thin-Film Transistors (CAD-TFT) 1-1 (IEEE, 2018).

  42. Li, W. et al. Mechanical-field-coupled thin-film transistor for tactile sensing with mN dynamic force detection capability and wearable self-driven heart rate monitoring with μW power consumption. In Proc. 2017 IEEE International Electron Devices Meeting (IEDM) (ed. Giles, M.) 18.13.1–18.13.4 (IEEE, 2017).

  43. Lin, P., Luo, X., Hsing, I. M. & Yan, F. Organic electrochemical transistors integrated in flexible microfluidic systems and used for label-free DNA sensing. Adv. Mater. 23, 4035–4040 (2011).

    Google Scholar 

  44. Zan, H.-W. et al. Room-temperature-operated sensitive hybrid gas sensor based on amorphous indium gallium zinc oxide thin-film transistors. Appl. Phys. Lett. 98, 253503 (2011).

    Google Scholar 

  45. Pei, K. et al. A high-performance optical memory array based on inhomogeneity of organic semiconductors. Adv. Mater. 30, 1706647 (2018).

    Google Scholar 

  46. Liu, P.-T., Chu, L.-W., Teng, L.-F., Fan, Y.-S. & Fuh, C.-S. Transparent amorphous oxide semiconductors for system on panel applications. ECS Trans. 50, 257 (2013).

    Google Scholar 

  47. Sasaki, D. et al. A panel-sized TFT-LCD scan driver. In Proc. ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference 554–555 (IEEE, 2005).

  48. Chen, C. et al. Integrating poly-silicon and InGaZnO thin-film transistors for CMOS inverters. IEEE Trans. Electron Devices 64, 3668–3671 (2017).

    Google Scholar 

  49. Chang, T.-K., Lin, C.-W. & Chang, S. LTPO TFT technology for AMOLEDs. In SID Symposium Digest of Technical Papers (ed. Fitzsimmons, K. J.) 545–548 (Wiley, 2019).

  50. Kim, H.-S., Cho, N., Kim, T. & Lee, J. Display backplane and method of fabricating the same. Google Patent US9490276B2 (2016).

  51. Naito, T. et al. World’s first monolithic 3D-FPGA with TFT SRAM over 90 nm 9 layer Cu CMOS. In Proc. 2010 Symposium on VLSI Technology (ed. Shibahara, K.) 219–220 (IEEE, 2010).

  52. Karaki, N. et al. A flexible 8b asynchronous microprocessor based on low-temperature poly-silicon TFT technology. In Proc. ISSCC. 2005 IEEE International Digest of Technical Papers, Solid-State Circuits Conference (ed. Fujino, L.) 272–598 (IEEE, 2005).

  53. Yamazaki, S. Low-temperature polysilicon history and a CPU with an operating frequency in the GHz range. ECS Trans. 8, 3 (2007).

    Google Scholar 

  54. Çeliker, H., Sou, A., Cobb, B., Dehaene, W. & Myny, K. A flexible 8b microprocessor in 0.8 µm metal-oxide thin-film transistor technology implemented with a complete digital design flow running complex assembly code. In Proc. 2022 IEEE International Solid-State Circuits Conference (ISSCC) (ed. Wooley, B.) 272–274 (IEEE, 2022).

  55. Haga, H. et al. 24.4: a 510-kb SOG-DRAM for frame-memory-integrated displays. In SID Symposium Digest of Technical Papers 1106–1109 (Wiley, 2005).

  56. Verma, N. et al. Enabling scalable hybrid systems: architectures for exploiting large-area electronics in applications. Proc. IEEE 103, 690–712 (2015).

    Google Scholar 

  57. Huang, T.-C. et al. Pseudo-CMOS: a design style for low-cost and robust flexible electronics. IEEE Trans. Electron Devices 58, 141–150 (2010).

    Google Scholar 

  58. Çeliker, H., Dehaene, W. & Myny, K. Dual-input pseudo-CMOS logic for digital applications on flexible substrates. In Proc. ESSCIRC 2021-IEEE 47th European Solid State Circuits Conference (ESSCIRC) 255–258 (IEEE, 2021).

  59. Elsobky, M. et al. A digital library for a flexible low-voltage organic thin-film transistor technology. Org. Electron. 50, 491–498 (2017).

    Google Scholar 

  60. Cantarella, G. et al. Review of recent trends in flexible metal oxide thin-film transistors for analog applications. Flex. Print. Electron. 5, 033001 (2020).

    Google Scholar 

  61. Chen, Y.-J. E., Lee, Y.-J., Yu, Y.-H. & Huang, S.-M. On the development of RFID tags in TFT technology. In Proc. 2009 Asia Pacific Microwave Conference (ed. Lin, F.) 2244–2247 (IEEE, 2009).

  62. Tiwari, B., Bahubalindruni, P. G., Shrivastava, S. & Goes, J. Mixed-signal building blocks for communication systems using flexible oxide TFT technology. IEEE J. Flex. Electron. 1, 223–230 (2022).

    Google Scholar 

  63. Myny, K. et al. A flexible ISO14443-A compliant 7.5 mW 128b metal-oxide NFC barcode tag with direct clock division circuit from 13.56 MHz carrier. In Proc. 2017 IEEE International Solid-State Circuits Conference (ISSCC) (ed. Fujino, L.) 258–259 (IEEE, 2017).

  64. Zulqarnain, M. et al. A flexible ECG patch compatible with NFC RF communication. npj Flex. Electron 4, 13 (2020).

    Google Scholar 

  65. Matsuda, S. et al. 30-nm-channel-length c-axis aligned crystalline In-Ga-Zn-O transistors with low off-state leakage current and steep subthreshold characteristics. In Proc. 2015 Symposium on VLSI Technology (VLSI Technology) (ed. Sugii, N.) T216–T217 (IEEE, 2015).

  66. Kurokawa, Y. et al. Applications of crystalline indium-gallium-zinc-oxide technology to LSI: memory, processor, image sensor and field programmable gate array. In Proc. Fifth Asia Symposium on Quality Electronic Design (ASQED 2013) 66–71 (IEEE, 2013).

  67. Ohmaru, T. et al. Eight-bit CPU with nonvolatile registers capable of holding data for 40 days at 85 °C using crystalline In-Ga-Zn oxide thin film transistors. In Proc. Extended Abstracts SSDM 1144–1145 (SSDM Open Access, 2012).

  68. Wu, S. H. et al. Extremely low power c-axis aligned crystalline In-Ga-Zn-O 60 nm transistor integrated with industry 65 nm Si MOSFET for IoT normally-off CPU application. In Proc. 2016 IEEE Symposium on VLSI Technology (ed. Tada, M.) 1–2 (IEEE, 2016).

  69. Kim, Y. et al. A bioinspired flexible organic artificial afferent nerve. Science 360, 998–1003 (2018).

    Google Scholar 

  70. Zhu, L. Q., Wan, C. J., Guo, L. Q., Shi, Y. & Wan, Q. Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat. Commun. 5, 3158 (2014).

    Google Scholar 

  71. Sangwan, V. K. et al. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 554, 500–504 (2018).

    Google Scholar 

  72. Kimura, M. et al. Neuromorphic system with crosspoint-type amorphous Ga-Sn-O thin-film devices as self-plastic synapse elements. ECS Trans. 90, 157 (2019).

    Google Scholar 

  73. Ozatay, M. et al. Artificial intelligence meets large-scale sensing: using large-area electronics (LAE) to enable intelligent spaces. In 2018 IEEE Custom Integrated Circuits Conference (CICC) 1–8 (IEEE, 2018).

  74. Ozer, E. et al. A hardwired machine learning processing engine fabricated with submicron metal-oxide thin-film transistors on a flexible substrate. Nat. Electron. 3, 419–425 (2020).

  75. Franklin, A. D. Nanomaterials in transistors: from high-performance to thin-film applications. Science 349, aab2750 (2015).

    Google Scholar 

  76. Shen, Y. et al. The trend of 2D transistors toward integrated circuits: scaling down and new mechanisms. Adv. Mater. 34, e2201916 (2022).

    Google Scholar 

  77. Song, E. et al. Flexible electronic/optoelectronic microsystems with scalable designs for chronic biointegration. Proc. Natl Acad. Sci. USA 116, 15398–15406 (2019).

    Google Scholar 

  78. Matsuzaki, T. et al. 16.9 A 128 kb 4b/cell nonvolatile memory with crystalline In-Ga-Zn oxide FET using Vt, cancel write method. In Proc. 2015 IEEE International Solid-State Circuits Conference-(ISSCC) Digest of Technical Papers (ed. Fujino, L.) 1–3 (IEEE, 2015).

  79. Kamiya, T., Nomura, K. & Hosono, H. Origins of high mobility and low operation voltage of amorphous oxide TFTs: electronic structure, electron transport, defects and doping. J. Disp. Technol. 5, 273–288 (2009).

    Google Scholar 

  80. Chowdhury, M. D. H., Migliorato, P. & Jang, J. Light induced instabilities in amorphous indium-gallium-zinc-oxide thin-film transistors. Appl. Phys. Lett. 97, 173506 (2010).

    Google Scholar 

  81. Kaltenbrunner, M. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013).

    Google Scholar 

  82. Qi, Y., Li, A., Xu, Y. & Wang, K. Amorphous silicon 3-D one-transistor active pixel sensor enabling large area imaging. J. Soc. Inf. Disp. 29, 968–973 (2021).

    Google Scholar 

  83. Myny, K. The development of flexible integrated circuits based on thin-film transistors. Nat. Electron. 1, 30–39 (2018).

    Google Scholar 

  84. Hung, M.-H. et al. Ultra low voltage 1-V RFID tag implement in a-IGZO TFT technology on plastic. In Proc. 2017 IEEE International Conference on RFID (RFID) (ed. Hawrylak, P. J.) 193–197 (IEEE, 2017).

  85. Ozaki, H., Kawamura, T., Wakana, H., Yamazoe, T. & Uchiyama, H. 20-µW operation of an a-IGZO TFT-based RFID chip using purely NMOS ‘active’ load logic gates with ultra-low-consumption power. In Proc. 2011 Symposium on VLSI Circuits-Digest of Technical Papers (eds Kabuo, H. & Nikolic, B.) 54–55 (IEEE, 2011).

  86. Fiore, V. et al. A 13.56 MHz RFID tag with active envelope detection in an organic complementary TFT technology. In Proc. 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (ed. Fujino, L.) 492–493 (IEEE, 2014).

  87. Duan, X. et al. Novel vertical channel-all-around (CAA) In-Ga-Zn-O FET for 2T0C-DRAM with high density beyond 4F2 by monolithic stacking. IEEE Trans. Electron Devices 69, 2196–2202 (2022).

    Google Scholar 

  88. Wang, W. et al. Integration and co-design of memristive devices and algorithms for artificial intelligence. iScience 23, 101809 (2020).

    Google Scholar 

  89. Huang, K. et al. Vertical channel-all-around (CAA) IGZO FET under 50 nm CD with high read current of 32.8 μA/μm (Vth + 1 V), well-performed thermal stability up to 120 °C for low latency, high-density 2T0C 3D DRAM application. In Proc. 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) (ed. Yu, S.) 296–297 (IEEE, 2022).

  90. Inoue, H. et al. 12.2 micro short-circuit detector including S/H circuit for 1 hr retention and 52 dB comparator composed of c-axis aligned crystalline IGZO FETs for Li-ion battery protection IC. In Proc. 2019 IEEE International Solid-State Circuits Conference (ISSCC) (ed. Fujino, L.) 204–206 (IEEE, 2019).

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (grants nos. 2022YFB3607200 and 2022YFA1204202), by the Opening Project of the Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, and by the National Natural Science Foundation of China (grants nos. 61890944, 92264204, 62274178, 61720106013, 61904195 and 62004214), by the Strategic Priority Research Program of the Chinese Academy of Sciences (grants nos. XDB30030000, XDA0330100 and XDA0330401), and also a part of a project that has received funding from the European Research Council (ERC) under the European Union’s Horizon Europe Research and Innovation programme grant agreement no. 101088591 (ORISON project).

Author information

Authors and Affiliations

Authors

Contributions

D.G. and K.W. wrote the paper together. L.L., K.M. and A.N. gave suggestions on each section. J.J. and Y.K. gave feedback on the requirements of TFTs for various applications. L.L. and M.L. supervised and coordinated the study. All authors read and revised the paper.

Corresponding authors

Correspondence to Ling Li or Ming Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Xubing Lu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, D., Wang, K., Li, L. et al. Thin-film transistors for large-area electronics. Nat Electron 6, 963–972 (2023). https://doi.org/10.1038/s41928-023-01095-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-023-01095-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing