Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrical manipulation and detection of antiferromagnetism in magnetic tunnel junctions

Abstract

Electrical manipulation and detection of antiferromagnetic order could be used to create reliable and fast spintronic memory devices. The state of antiferromagnets can be read out using signals such as the anisotropic magnetoresistance and anomalous Hall effect, but these signals remain low, which restricts device development. Here we report the electrical detection of antiferromagnetism in Pt/IrMn/CoFeB/MgO/CoFeB three-terminal magnetic tunnel junctions using tunnelling magnetoresistance. We measure a tunnelling magnetoresistance ratio of over 80%, which is achieved by imprinting the antiferromagnetic state of IrMn on the ferromagnetic CoFeB free layer. We show current-polarity-dependent switching of IrMn down to 0.8 ns and identify two switching mechanisms: a heat-driven mode and a spin–orbit-torque-driven mode. The dominant switching mechanism depends on the current pulse width. Numerical simulations suggest that the spin–orbit torque generated by Pt induces the precession of IrMn moments and that exchange coupling at the IrMn/CoFeB interface determines the switching polarity of IrMn.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Device geometry and magnetoresistance properties.
Fig. 2: Subnanosecond switching and single-shot dynamics.
Fig. 3: Experimental evidence for SOT contribution, supported by atomistic modelling.
Fig. 4: Magnetic-field immunity and power consumption estimation.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and the other findings of this study are available from the corresponding author upon reasonable request.

Code availability

The codes used in this paper are available from the corresponding author upon reasonable request.

References

  1. Dieny, B. et al. Opportunities and challenges for spintronics in the microelectronics industry. Nat. Electron. 3, 446–459 (2020).

    Article  Google Scholar 

  2. Guo, Z. et al. Spintronics for energy-efficient computing: an overview and outlook. Proc. IEEE 109, 1398–1417 (2021).

    Article  Google Scholar 

  3. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Article  Google Scholar 

  4. Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article  Google Scholar 

  5. Ikeda, S. et al. A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nat. Mater. 9, 721–724 (2010).

    Article  Google Scholar 

  6. Wang, M. et al. Field-free switching of a perpendicular magnetic tunnel junction through the interplay of spin–orbit and spin-transfer torques. Nat. Electron. 1, 582–588 (2018).

    Article  Google Scholar 

  7. Grimaldi, E. et al. Single-shot dynamics of spin–orbit torque and spin transfer torque switching in three-terminal magnetic tunnel junctions. Nat. Nanotechnol. 15, 111–117 (2020).

    Article  Google Scholar 

  8. Parkin, S. S. P. et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3, 862–867 (2004).

    Article  Google Scholar 

  9. Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, Y. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3, 868–871 (2004).

    Article  Google Scholar 

  10. Ikeda, S. et al. Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in CoFeB/MgO/CoFeB/ pseudo-spin-valves annealed at high temperature. Appl. Phys. Lett. 93, 082508 (2008).

    Article  Google Scholar 

  11. Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    Article  MathSciNet  Google Scholar 

  12. Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).

    Article  Google Scholar 

  13. Jungfeisch, M. B., Zhang, W. & Hofmann, A. Perspectives of antiferromagnetic spintronics. Phys. Lett. A 382, 865–871 (2018).

    Article  Google Scholar 

  14. Železný, J. et al. Spin transport and spin torque in antiferromagnetic devices. Nat. Phys. 14, 220–228 (2018).

    Article  Google Scholar 

  15. Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

    Article  Google Scholar 

  16. Chen, X. et al. Electric field control of Néel spin–orbit torque in an antiferromagnet. Nat. Mater. 18, 931–935 (2019).

    Article  Google Scholar 

  17. Manchon, A. et al. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).

    Article  MathSciNet  Google Scholar 

  18. Shi, J. et al. Electrical manipulation of the magnetic order in antiferromagnetic PtMn pillars. Nat. Electron. 3, 92–98 (2020).

    Article  Google Scholar 

  19. DuttaGupta, S. et al. Spin-orbit torque switching of an antiferromagnetic metallic heterostructure. Nat. Commun. 11, 5715 (2020).

    Article  Google Scholar 

  20. Baldrati, L. et al. Mechanism of Néel order switching in antiferromagnetic thin films revealed by magnetotransport and direct imaging. Phys. Rev. Lett. 123, 177201 (2019).

    Article  Google Scholar 

  21. Moriyama, T., Oda, K., Ohkochi, T., Kimata, M. & Ono, T. Spin torque control of antiferromagnetic moments in NiO. Sci. Rep. 8, 14167 (2018).

    Article  Google Scholar 

  22. Arpaci, S. et al. Observation of current-induced switching in noncollinear antiferromagnetic IrMn3 by differential voltage measurements. Nat. Commun. 12, 3828 (2021).

    Article  Google Scholar 

  23. Tsai, H. et al. Electrical manipulation of a topological antiferromagnetic state. Nature 580, 608–613 (2020).

    Article  Google Scholar 

  24. Higo, T. et al. Perpendicular full switching of chiral antiferromagnetic order by current. Nature 607, 474–479 (2022).

    Article  Google Scholar 

  25. Park, B. G. et al. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nat. Mater. 10, 347–351 (2011).

    Article  Google Scholar 

  26. Chiang, C. C., Huang, S. Y., Qu, D., Wu, P. H. & Chien, C. L. Absence of evidence of electrical switching of the antiferromagnetic Néel vector. Phys. Rev. Lett. 123, 227203 (2019).

    Article  Google Scholar 

  27. Godinho, J. et al. Electrically induced and detected Néel vector reversal in a collinear antiferromagnet. Nat. Commun. 9, 4686 (2018).

    Article  Google Scholar 

  28. Jenkins, S., Chantrell, Roy, W. & Evans, R. F. L. Atomistic origin of the athermal training effect in granular IrMn/CoFe bilayers. Phys. Rev. B 103, 104419 (2021).

    Article  Google Scholar 

  29. Ohldag, H. et al. Correlation between exchange bias and pinned interfacial spins. Phys. Rev. Lett. 91, 017203 (2003).

    Article  Google Scholar 

  30. Prejbeanu, I. L. et al. Thermally assisted MRAM. J. Phys.: Condens. Matter 19, 165218 (2007).

    Google Scholar 

  31. Prejbeanu, I. L. et al. Thermally assisted MRAMs: ultimate scalability and logic functionalities. J. Phys. D: Appl. Phys. 46, 074002 (2013).

    Article  Google Scholar 

  32. Reichlová, H. et al. Current-induced torques in structures with ultrathin IrMn antiferromagnets. Phys. Rev. B 92, 165424 (2015).

    Article  Google Scholar 

  33. Kim, H. J., Je, S. G., Jung, D. H., Lee, K. S. & Hong, J. I. Field-free control of exchange bias by spin Hall currents. Appl. Phys. Lett. 115, 022401 (2019).

    Article  Google Scholar 

  34. Sala, G. et al. Real-time Hall-effect detection of current-induced magnetization dynamics in ferrimagnets. Nat. Commun. 12, 656 (2021).

    Article  Google Scholar 

  35. Wang, X. et al. Spin-orbit-coupled transport and spin torque in a ferromagnetic heterostructure. Phys. Rev. B 89, 054405 (2014).

    Article  Google Scholar 

  36. Liu, L., Moriyama, T., Ralph, D. C. & Buhrman, R. A. Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys. Rev. Lett. 106, 036601 (2011).

    Article  Google Scholar 

  37. Peng, S. et al. Exchange bias switching in an antiferromagnet/ferromagnet bilayer driven by spin–orbit torque. Nat. Electron. 3, 757–764 (2020).

    Article  Google Scholar 

  38. Lin, P. H. et al. Manipulating exchange bias by spin–orbit torque. Nat. Mater. 18, 335–341 (2019).

    Article  Google Scholar 

  39. Fang, B. et al. Electrical manipulation of exchange bias in an antiferromagnet/ferromagnet-based device via spin–orbit torque. Adv. Funct. Mater. 32, 2112406 (2022).

    Article  Google Scholar 

  40. Zhang, W. et al. Spin Hall effects in metallic antiferromagnets. Phys. Rev. Lett. 113, 196602 (2014).

    Article  Google Scholar 

  41. Wang, X. et al. Spin transmission in IrMn through measurements of spin Hall magnetoresistance and spin-orbit torque. Phys. Rev. B 101, 144412 (2020).

    Article  Google Scholar 

  42. Cheng, R., Daniels, M. W., Zhu, J.-G. & Xiao, D. Ultrafast switching of antiferromagnets via spin-transfer torque. Phys. Rev. B 91, 064423 (2015).

    Article  Google Scholar 

  43. Evans, R. F. L. et al. Atomistic spin model simulations of magnetic nanomaterials. J. Phys.: Condens. Matter 26, 103202 (2014).

    Google Scholar 

  44. Jenkins, S. et al. Atomistic origin of exchange anisotropy in noncollinear γ-IrMn3–CoFe bilayers. Phys. Rev. B 102, 140404(R) (2020).

    Article  Google Scholar 

  45. Aradhya, S. V., Rowlands, G. E., Oh, J., Ralph, D. C. & Buhrman, R. A. Nanosecond-timescale low energy switching of in-plane magnetic tunnel junctions through dynamic Oersted-field-assisted spin Hall effect. Nano Lett. 16, 5987–5992 (2016).

    Article  Google Scholar 

  46. Honjo, H. et al. First demonstration of field-free SOT-MRAM with 0.35 ns write speed and 70 thermal stability under 400 °C thermal tolerance by canted SOT structure and its advanced patterning/SOT channel technology. In 2019 IEEE International Electron Devices Meeting (IEDM) 28.5.1–28.5.4 (IEEE, 2019).

  47. Dong, J. et al. Tunneling magnetoresistance in noncollinear antiferromagnetic tunnel junctions. Phys. Rev. Lett. 128, 197201 (2022).

    Article  Google Scholar 

  48. Shao, D. et al. Spin-neutral currents for spintronics. Nat. Commun. 12, 7061 (2021).

    Article  Google Scholar 

  49. Meer, H. et al. Direct imaging of current-induced antiferromagnetic switching revealing a pure thermomagnetoelastic switching mechanism in NiO. Nano Lett. 21, 114–119 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2022YFB4400200, W.Z.; 2022YFA1402604, D.Z.), National Natural Science Foundation of China (92164206, W.Z.; 62271026, K.S.; 62001014, K.C.; 52121001, W.Z.), National Postdoctoral Program for Innovative Talents (BX20220374, D.Z.) and Outstanding Research Project of Shenyuan Honors College (BUAA 230121102, A.D.) and the Tencent Foundation through the XPLORER PRIZE (W.Z.). We thank Y. Han (Center of Nanofabrication, Tsinghua University) for technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

W.Z. initialized, conceived and supervised the project. Z.G. and S. Lu designed and optimized the MTJ stack. A.D., Z.G., R.X., J.Y. and C.Z. fabricated the devices under the guidance of K.C. and K.S. A.D., D.Z., Z.G., D.X. and W.C. performed the measurements. D.Z. and Z.Z. performed the numerical simulations, and S. Luo and A.F. analysed the results. A.D., D.Z., K.C., Z.Z., Z.G. and W.Z. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Weisheng Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–25.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, A., Zhu, D., Cao, K. et al. Electrical manipulation and detection of antiferromagnetism in magnetic tunnel junctions. Nat Electron 6, 425–433 (2023). https://doi.org/10.1038/s41928-023-00975-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-023-00975-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing