Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Magnetism modulation in Co3Sn2S2 by current-assisted domain wall motion

Abstract

The efficiency of spintronic devices can be improved by generating higher effective magnetic fields with lower working currents. Spin-transfer torques can drive magnetic domain wall motion in a device composed of a single material, but a high threshold current density is typically required to move the domain wall and improving the effective magnetic field in common itinerant ferromagnets is difficult. Here we report magnetism modulation in Co3Sn2S2—a magnetic Weyl semimetal—via spin-transfer-torque-driven domain wall motion. We examine the effect of d.c. current on magnetic reversal using anomalous Hall resistance measurements and domain wall motion using time-of-flight measurements. At 160 K, the threshold current density for driving domain wall motion is less than 5.1 × 105 A cm−2 at zero external field and less than 1.5 × 105 A cm−2 at a moderate external field (0.2 kOe). The spin-transfer-torque effective field can reach as high as 2.4–5.6 kOe MA−1 cm2 at 150 K.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Current modulation of the reversal process.
Fig. 2: Current-assisted DW motion model.
Fig. 3: DW velocity measurement.
Fig. 4: Derived STT efficiency.

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Myers, E. B. Current-induced switching of domains in magnetic multilayer devices. Science 285, 867–870 (1999).

    Article  Google Scholar 

  2. Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

    Article  Google Scholar 

  3. Luo, Z. et al. Current-driven magnetic domain-wall logic. Nature 579, 214–218 (2020).

    Article  Google Scholar 

  4. Raymenants, E. et al. Nanoscale domain wall devices with magnetic tunnel junction read and write. Nat. Electron. 4, 392–398 (2021).

    Article  Google Scholar 

  5. Berger, L. Exchange interaction between ferromagnetic domain wall and electric current in very thin metallic films. J. Appl. Phys. 55, 1954–1956 (1984).

    Article  Google Scholar 

  6. Tatara, G. & Kohno, H. Theory of current-driven domain wall motion: spin transfer versus momentum transfer. Phys. Rev. Lett. 92, 086601 (2004).

    Article  Google Scholar 

  7. Zhang, S. & Li, Z. Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets. Phys. Rev. Lett. 93, 127204 (2004).

    Article  Google Scholar 

  8. Tatara, G., Kohno, H. & Shibata, J. Microscopic approach to current-driven domain wall dynamics. Phys. Rep. 468, 213–301 (2008).

    Article  Google Scholar 

  9. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Article  Google Scholar 

  10. Liu, L., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrman, R. A. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys. Rev. Lett. 109, 096602 (2012).

    Article  Google Scholar 

  11. Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article  Google Scholar 

  12. Khang, N. H. D., Ueda, Y. & Hai, P. N. A conductive topological insulator with large spin Hall effect for ultralow power spin–orbit torque switching. Nat. Mater. 17, 808–813 (2018).

    Article  Google Scholar 

  13. Dc, M. et al. Room-temperature high spin–orbit torque due to quantum confinement in sputtered BixSe(1–x) films. Nat. Mater. 17, 800–807 (2018).

    Article  Google Scholar 

  14. Yamaguchi, A. et al. Real-space observation of current-driven domain wall motion in submicron magnetic wires. Phys. Rev. Lett. 92, 077205 (2004).

    Article  Google Scholar 

  15. Feigenson, M., Reiner, J. W. & Klein, L. Efficient current-induced domain-wall displacement in SrRuO3. Phys. Rev. Lett. 98, 247204 (2007).

    Article  Google Scholar 

  16. Koyama, T. et al. Current-induced magnetic domain wall motion below intrinsic threshold triggered by Walker breakdown. Nat. Nanotechnol. 7, 635–639 (2012).

    Article  Google Scholar 

  17. Gushi, T. et al. Large current driven domain wall mobility and gate tuning of coercivity in ferrimagnetic Mn4N thin films. Nano Lett. 19, 8716–8723 (2019).

    Article  Google Scholar 

  18. Yamanouchi, M., Chiba, D., Matsukura, F. & Ohno, H. Current-induced domain-wall switching in a ferromagnetic semiconductor structure. Nature 428, 539–542 (2004).

    Article  Google Scholar 

  19. Yamanouchi, M. et al. Universality classes for domain wall motion in the ferromagnetic semiconductor (Ga,Mn)As. Science 317, 1726–1729 (2007).

    Article  Google Scholar 

  20. Liu, L. et al. Electrical switching of perpendicular magnetization in a single ferromagnetic layer. Phys. Rev. B 101, 220402 (2020).

    Article  Google Scholar 

  21. Zhang, K. et al. Gigantic current control of coercive field and magnetic memory based on nanometer‐thin ferromagnetic van der Waals Fe3GeTe2. Adv. Mater. 33, 2004110 (2021).

    Article  Google Scholar 

  22. Liu, E. et al. Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal. Nat. Phys. 14, 1125–1131 (2018).

    Article  Google Scholar 

  23. Wang, Q. et al. Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions. Nat. Commun. 9, 3681 (2018).

    Article  Google Scholar 

  24. Liu, D. F. et al. Magnetic Weyl semimetal phase in a kagomé crystal. Science 365, 1282–1285 (2019).

    Article  Google Scholar 

  25. Morali, N. et al. Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2. Science 365, 1286–1291 (2019).

    Article  Google Scholar 

  26. Tanaka, M. et al. Topological kagome magnet Co3Sn2S2 thin flakes with high electron mobility and large anomalous Hall effect. Nano Lett. 20, 7476–7481 (2020).

    Article  Google Scholar 

  27. Shen, J. et al. On the anisotropies of magnetization and electronic transport of magnetic Weyl semimetal Co3Sn2S2. Appl. Phys. Lett. 115, 212403 (2019).

    Article  Google Scholar 

  28. Metaxas, P. J. et al. Creep and flow regimes of magnetic domain-wall motion in ultrathin Pt/Co/Pt films with perpendicular anisotropy. Phys. Rev. Lett. 99, 217208 (2007).

    Article  Google Scholar 

  29. Mougin, A., Cormier, M., Adam, J. P., Metaxas, P. J. & Ferré, J. Domain wall mobility, stability and Walker breakdown in magnetic nanowires. Europhys. Lett. 78, 57007 (2007).

    Article  Google Scholar 

  30. Beach, G. S. D., Tsoi, M. & Erskine, J. L. Current-induced domain wall motion. J. Magn. Magn. Mater. 320, 1272–1281 (2008).

    Article  Google Scholar 

  31. Lee, C. et al. Observation of a phase transition within the domain walls of ferromagnetic Co3Sn2S2. Nat. Commun. 13, 3000 (2022).

    Article  Google Scholar 

  32. Díaz Pardo, R. et al. Common universal behavior of magnetic domain walls driven by spin-polarized electrical current and magnetic field. Phys. Rev. B 100, 184420 (2019).

    Article  Google Scholar 

  33. Yamanouchi, M. et al. Observation of topological Hall torque exerted on a domain wall in the ferromagnetic oxide SrRuO3. Sci. Adv. 8, eabl6192 (2022).

    Article  Google Scholar 

  34. Lee, J.-C. et al. Universality classes of magnetic domain wall motion. Phys. Rev. Lett. 107, 067201 (2011).

    Article  Google Scholar 

  35. Stoner, E. C. & Wohlfarth, E. P. A mechanism of magnetic hysteresis in heterogeneous alloys. Phil. Trans. R. Soc. A 240, 599–642 (1948).

    MATH  Google Scholar 

  36. Cullity, B. D. & Graham, C. D. Introduction to Magnetic Materials (Wiley, 2008).

  37. Thiaville, A. & Nakatani, Y. in Spin Dynamics in Confined Magnetic Structures III (eds Hillebrands, B. & Thiaville, A.) 161–205 (Springer, 2006).

  38. Manchon, A. et al. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).

    Article  MathSciNet  Google Scholar 

  39. Yoshimura, Y. et al. Soliton-like magnetic domain wall motion induced by the interfacial Dzyaloshinskii–Moriya interaction. Nat. Phys. 12, 157–161 (2016).

    Article  Google Scholar 

  40. Kim, K.-J. et al. Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets. Nat. Mater. 16, 1187–1192 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

We thank L. Liu and Y. Zhu for valuable discussions, X. Cheng for reflective magnetic circular dichroism measurements and J. Zhang for magnetic force microscopy measurements. This work was supported by the National Key R&D Program of China (grant nos. 2017YFA0206301 (Y.H.), 2018YFA0306900 (Y.Y.) and 2022YFA1403400 (E.L.)), the National Natural Science Foundation of China (grant nos. 52088101 (E.L.), 11974394 (E.L.), 51631001 (Y.H.) and 51672010 (Y.H.)), the Beijing Natural Science Foundation (grant no. JQ21018 (Y.Y.)), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB33000000 (E.L.)), JST CREST (grant no. JPMJCR18T2 (K.N.)) and JSPS KAKENHI (grant no. JP20H01830 (K.N.)).

Author information

Authors and Affiliations

Authors

Contributions

Q.W. and Y.Y. conceived the project. Y.Z. grew the Co3Sn2S2 nanoflakes and fabricated the devices assisted by K.Y. Q.Z. and E.L. provided the precursor Co3Sn2S2 powders and helpful discussion for preparing the nanoflake samples. Q.W. conducted the transport measurements assisted by Y.Z., K.Y. and P.G. Q.W. analysed the data. X.X. performed the high-resolution transmission electron microscopy measurements. E.L. and K.N. provided scientific discussions. Q.W. and Y.Y. wrote the manuscript, with input from all the authors. Y.H. and Y.Y. supervised the project. All the authors discussed the results, interpretation and conclusion.

Corresponding authors

Correspondence to Enke Liu, Yanglong Hou or Yu Ye.

Ethics declarations

Competing interests

The authors have applied for a Chinese patent (no. 202111248060.1) for using current injection to modulate magnetism in magnetic semimetal thin films, which is now under consideration.

Peer review

Peer review information

Nature Electronics thanks Yukako Fujishiro and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13 and Tables 1–7.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Zeng, Y., Yuan, K. et al. Magnetism modulation in Co3Sn2S2 by current-assisted domain wall motion. Nat Electron (2022). https://doi.org/10.1038/s41928-022-00879-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41928-022-00879-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing