Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coexistence of large conventional and planar spin Hall effect with long spin diffusion length in a low-symmetry semimetal at room temperature

Abstract

The spin Hall effect (SHE) is usually observed as a bulk effect in high-symmetry crystals with substantial spin–orbit coupling (SOC), where the symmetric spin–orbit field imposes a widely encountered trade-off between spin Hall angle (θSH) and spin diffusion length (Lsf), and spin polarization, spin current and charge current are constrained to be mutually orthogonal. Here, we report a large θSH of 0.32 accompanied by a long Lsf of 2.2 μm at room temperature in a low-symmetry few-layered semimetal MoTe2, thus identifying it as an excellent candidate for simultaneous spin generation, transport and detection. In addition, we report that longitudinal spin current with out-of-plane polarization can be generated by both transverse and vertical charge current, due to the conventional and a newly observed planar SHE, respectively. Our study suggests that manipulation of crystalline symmetries and strong SOC opens access to new charge-spin interconversion configurations and spin–orbit torques for spintronic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crystal symmetry of bulk and few-layered MoTe2.
Fig. 2: Conventional SHE in MoTe2.
Fig. 3: Charge-induced out-of-plane spin current.
Fig. 4: Planar SHE and performance benchmark.
Fig. 5: DFT calculations of the SHE of MoTe2.

Similar content being viewed by others

Data availability

The datasets generated by the present study are available from the corresponding author on request.

References

  1. Wu, S. et al. Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science 359, 76–79 (2018).

    CAS  Google Scholar 

  2. Fei, Z. et al. Edge conduction in monolayer WTe2. Nat. Phys. 13, 677 (2017).

    Article  CAS  Google Scholar 

  3. Fatemi, V. et al. Electrically tunable low-density superconductivity in a monolayer topological insulator. Science 362, 926–929 (2018).

    CAS  Google Scholar 

  4. Sajadi, E. et al. Gate-induced superconductivity in a monolayer topological insulator. Science 362, 922–925 (2018).

    CAS  Google Scholar 

  5. Ma, Q. et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature 565, 337–342 (2018).

    Google Scholar 

  6. Kang, K., Li, T., Sohn, E., Shan, J. & Mak, K. F. Nonlinear anomalous Hall effect in few-layer WTe2. Nat. Mater. 18, 324–328 (2019).

    CAS  Google Scholar 

  7. MacNeill, D. et al. Control of spin–orbit torques through crystal symmetry in WTe2/ferromagnet bilayers. Nat. Phys. 13, 300 (2016).

    Google Scholar 

  8. He, P. et al. Observation of out-of-plane spin texture in a SrTiO3 two-dimensional electron gas. Phys. Rev. Lett. 120, 266802 (2018).

    CAS  Google Scholar 

  9. Kimata, M. et al. Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet. Nature 565, 627–630 (2019).

    CAS  Google Scholar 

  10. Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).

    Google Scholar 

  11. Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    CAS  Google Scholar 

  12. Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999).

    CAS  Google Scholar 

  13. Kimura, T., Otani, Y., Sato, T., Takahashi, S. & Maekawa, S. Room-temperature reversible spin Hall effect. Phys. Rev. Lett. 98, 156601 (2007).

    CAS  Google Scholar 

  14. Vila, L., Kimura, T. & Otani, Y. Evolution of the spin Hall effect in Pt nanowires: size and temperature effects. Phys. Rev. Lett. 99, 226604 (2007).

    Google Scholar 

  15. Pai, C.-F. et al. Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Appl. Phys. Lett. 101, 122404 (2012).

    Google Scholar 

  16. Wang, X., Pauyac, C. O. & Manchon, A. Spin-orbit-coupled transport and spin torque in a ferromagnetic heterostructure. Phys. Rev. B. 89, 054405 (2014).

    Google Scholar 

  17. Gómez, J. E. et al. Spin transport parameters in Ni80Fe20/Ru and Ni80Fe20/Ta bilayers. Phys. Rev. B. 90, 184401 (2014).

    Google Scholar 

  18. Garlid, E. S., Hu, Q. O., Chan, M. K., Palmstrøm, C. J. & Crowell, P. A. Electrical measurement of the direct spin Hall effect in Fe/InxGa1-xAs heterostructures. Phys. Rev. Lett. 105, 156602 (2010).

    CAS  Google Scholar 

  19. Ehlert, M. et al. All-electrical measurements of direct spin Hall effect in GaAs with Esaki diode electrodes. Phys. Rev. B. 86, 205204 (2012).

    Google Scholar 

  20. Olejník, K. et al. Detection of electrically modulated inverse spin Hall effect in an Fe/GaAs microdevice. Phys. Rev. Lett. 109, 076601 (2012).

    Google Scholar 

  21. Zhao, B. et al. Observation of spin Hall effect in semimetal WTe2. Preprint at https://arxiv.org/abs/1812.02113 (2019).

  22. Sinova, J. et al. Universal intrinsic spin Hall effect. Phys. Rev. Lett. 92, 126603 (2004).

    Google Scholar 

  23. Guo, G. Y., Yao, Y. & Niu, Q. Ab initio calculation of the intrinsic spin Hall effect in semiconductors. Phys. Rev. Lett. 94, 226601 (2005).

    CAS  Google Scholar 

  24. Sun, Y., Zhang, Y., Felser, C. & Yan, B. Strong intrinsic spin Hall effect in the TaAs family of Weyl semimetals. Phys. Rev. Lett. 117, 146403 (2016).

    Google Scholar 

  25. Deng, K. et al. Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2. Nat. Phys. 12, 1105–1110 (2016).

    CAS  Google Scholar 

  26. Jiang, J. et al. Signature of type-II Weyl semimetal phase in MoTe2. Nat. Commun. 8, 13973 (2017).

    CAS  Google Scholar 

  27. Balakrishnan, J., Kok Wai Koon, G., Jaiswal, M., Castro Neto, A. H. & Özyilmaz, B. Colossal enhancement of spin–orbit coupling in weakly hydrogenated graphene. Nat. Phys. 9, 284–287 (2013).

    CAS  Google Scholar 

  28. Kaverzin, A. A. & van Wees, B. J. Electron transport nonlocality in monolayer graphene modified with hydrogen silsesquioxane polymerization. Phys. Rev. B. 91, 165412 (2015).

    Google Scholar 

  29. Völkl, T. et al. Absence of a giant spin Hall effect in plasma-hydrogenated graphene. Phys. Rev. B. 99, 085401 (2019).

    Google Scholar 

  30. Yang, T., Kimura, T. & Otani, Y. Giant spin-accumulation signal and pure spin-current-induced reversible magnetization switching. Nat. Phys. 4, 851 (2008).

    CAS  Google Scholar 

  31. Meyer, S. et al. Observation of the spin Nernst effect. Nat. Mater. 16, 977–981 (2017).

    CAS  Google Scholar 

  32. Luqiao Liu, R. A. Buhrman, D. C. Ralph. Review and analysis of measurements of the spin Hall effect in platinum. Preprint at https://arxiv.org/abs/1111.3702 (2012).

  33. Valenzuela, S. O. Nonlocal electronic spin detection, spin accumulation and the spin Hall effect. Inter. J. Mod. Phys. B 23, 2413–2438 (2009).

    CAS  Google Scholar 

  34. Idzuchi, H., Fukuma, Y. & Otani, Y. Spin transport in non-magnetic nano-structures induced by non-local spin injection. Phys. E. 68, 239–263 (2015).

    CAS  Google Scholar 

  35. Zahnd, G. et al. Spin diffusion length and polarization of ferromagnetic metals measured by the spin-absorption technique in lateral spin valves. Phys. Rev. B. 98, 174414 (2018).

    CAS  Google Scholar 

  36. He, R. et al. Dimensionality-driven orthorhombic MoTe2 at room temperature. Phys. Rev. B. 97, 041410 (2018).

    CAS  Google Scholar 

  37. Britnell, L. et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 12, 1707–1710 (2012).

    CAS  Google Scholar 

  38. Valenzuela, S. O. & Tinkham, M. Direct electronic measurement of the spin Hall effect. Nature 442, 176–179 (2006).

    CAS  Google Scholar 

  39. Nakayama, H. et al. Spin Hall magnetoresistance induced by a nonequilibrium proximity effect. Phys. Rev. Lett. 110, 206601 (2013).

    CAS  Google Scholar 

  40. Abanin, D. A., Shytov, A. V., Levitov, L. S. & Halperin, B. I. Nonlocal charge transport mediated by spin diffusion in the spin Hall effect regime. Phys. Rev. B. 79, 035304 (2009).

    Google Scholar 

  41. Lesne, E. et al. Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces. Nat. Mater. 15, 1261–1266 (2016).

    CAS  Google Scholar 

  42. Ohshima, R. et al. Strong evidence for d-electron spin transport at room temperature at a LaAlO3/SrTiO3 interface. Nat. Mater. 16, 609–614 (2017).

    CAS  Google Scholar 

  43. Cui, J. et al. Transport evidence of asymmetric spin–orbit coupling in few-layer superconducting 1Td-MoTe2. Nat. Commun. 10, 2044 (2019).

    Google Scholar 

  44. Wang, Q. et al. Room-temperature nanoseconds spin relaxation in WTe2 and MoTe2 thin films. Adv. Sci. 5, 1700912 (2018).

    Google Scholar 

  45. Kurebayashi, H. et al. An antidamping spin–orbit torque originating from the Berry curvature. Nat. Nanotechnol. 9, 211–217 (2014).

    CAS  Google Scholar 

  46. Ciccarelli, C. et al. Room-temperature spin–orbit torque in NiMnSb. Nat. Phys. 12, 855–860 (2016).

    CAS  Google Scholar 

  47. Zhang, W. et al. Giant facet-dependent spin-orbit torque and spin Hall conductivity in the triangular antiferromagnet IrMn3. Sci. Adv. 2, e1600759 (2016).

    Google Scholar 

  48. Kresse, G. & Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B. 48, 13115–13118 (1993).

    CAS  Google Scholar 

  49. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Google Scholar 

  50. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169–11186 (1996).

    CAS  Google Scholar 

  51. Kuzemsky et al. Electronic transport in metallic systems and generalized kinetic equations. Int. J. Mod. Phys. B. 25, 3071–3183 (2011).

    CAS  Google Scholar 

  52. Kleiner, W. H. Space-time symmetry of transport coefficients. Phys. Rev. 142, 318–326 (1966).

    CAS  Google Scholar 

  53. Wimmer, S., Seemann, M., Chadova, K., Ködderitzsch, D. & Ebert, H. Spin-orbit-induced longitudinal spin-polarized currents in nonmagnetic solids. Phys. Rev. B. 92, 041101 (2015).

    Google Scholar 

  54. Mostofi, A. A. et al. An updated version of wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 185, 2309–2310 (2014).

    CAS  Google Scholar 

  55. Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73, 233–235 (1990).

    Google Scholar 

  56. Manchon, A. & Zhang, S. Theory of spin torque due to spin-orbit coupling. Phys. Rev. B. 79, 094422 (2009).

    Google Scholar 

  57. Li, H. et al. Intraband and interband spin-orbit torques in noncentrosymmetric ferromagnets. Phys. Rev. B. 91, 134402 (2015).

    Google Scholar 

  58. Weber, A. P. et al. Spin-resolved electronic response to the phase transition in MoTe2. Phys. Rev. Lett. 121, 156401 (2018).

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge S. Roche for insightful discussions. K.P.L. acknowledges the AME-IRG grant ‘Scalable Growth of Ultrathin Ferroelectric Materials for Memory Technologies’, no. A1938c0035, funded by the Agency for Science, Technology and Research, Singapore. P.S. thanks B. Özyilmaz for providing molecular-beam epitaxy slots and H. Chen for assistance in electron-beam lithography.

Author information

Authors and Affiliations

Authors

Contributions

P.S. and K.P.L. conceived the project, P.S. performed device fabrication and electric measurements with help from Y.D. and Y.Z. C.H.H., H.L., V.M.P. and G.V. performed DFT calculations and theoretical modelling. M.Z. performed Raman measurements and exfoliation of h-BN, J.L. performed MBE deposition of Co, W.F. drew part of the schematics and Y.L. helped with figure processing. P.S., C.H.H., V.M.P. and K.P.L. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Hsin Lin, Vitor M. Pereira or Kian Ping Loh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Figs. 1–15 and Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, P., Hsu, CH., Vignale, G. et al. Coexistence of large conventional and planar spin Hall effect with long spin diffusion length in a low-symmetry semimetal at room temperature. Nat. Mater. 19, 292–298 (2020). https://doi.org/10.1038/s41563-019-0600-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-019-0600-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing