Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Micro-thermoelectric devices

Abstract

Sustainable energy harvesting and efficient thermal management are required for the development of highly integrated electronic devices, the Internet of Things, and flexible and wearable technology. Micro-thermoelectric devices, which are capable of generating electricity from waste heat or using electricity to generate local cooling, are a promising solution. The devices have, in particular, a smaller leg cross-section and height than their commercial, macroscopic counterparts and can thus offer a faster response, higher resolution and greater power density. They can also be integrated with multifunctional microelectronic devices. Here we review the development of micro-thermoelectric devices. We examine progress in device design, integration, characterization and performance, and explore potential applications in cooling, power generation and sensing. We also analyse the key challenges that need to be addressed to create high-performance devices and realize the full commercial potential of the technology.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Existing and future applications and device principles of macro- and µ-TEDs.
Fig. 2: Power generation performance of a micro-thermocouple relating to different structural parameters.
Fig. 3: Timeline of major µ-TED developments in the past 30 years split into four fabrication technologies.
Fig. 4: Performance of µ-TEDs fabricated by different technologies.
Fig. 5: Potential application areas for µ-TEDs.

References

  1. Rowe, D. M. Thermoelectrics Handbook: Macro to Nano Ch. 11 (CRC Press, 2005).

  2. Mao, J., Chen, G. & Ren, Z. Thermoelectric cooling materials. Nat. Mater. 20, 454–461 (2021).

    Google Scholar 

  3. Li, G. et al. Integrated microthermoelectric coolers with rapid response time and high device reliability. Nat. Electron. 1, 555–561 (2018). This work reported the fabrication of an integrated µ-TEC using electrochemical deposition Bi–Te compounds, offering rapid response time and high device reliability.

    Google Scholar 

  4. Hu, G., Edwards, H. & Lee, M. Silicon integrated circuit thermoelectric generators with a high specific power generation capacity. Nat. Electron. 2, 300–306 (2019).

    Google Scholar 

  5. Russ, B., Glaudell, A., Urban, J. J., Chabinyc, M. L. & Segalman, R. A. Organic thermoelectric materials for energy harvesting and temperature control. Nat. Rev. Mater. 1, 16050 (2016).

    Google Scholar 

  6. Bulman, G. et al. Superlattice-based thin-film thermoelectric modules with high cooling fluxes. Nat. Commun. 7, 10302 (2016).

    Google Scholar 

  7. Zhang, F., Zang, Y., Huang, D., Di, C. & Zhu, D. Flexible and self-powered temperature–pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nat. Commun. 6, 8356 (2015).

    Google Scholar 

  8. Rösch, A. G. et al. Fully printed origami thermoelectric generators for energy-harvesting. npj Flex. Electron. 5, 1 (2021).

    Google Scholar 

  9. Zhou, C. et al. Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal. Nat. Mater. 20, 1378–1384 (2021).

    Google Scholar 

  10. Dhawan, R. et al. Si0.97Ge0.03 microelectronic thermoelectric generators with high power and voltage densities. Nat. Commun. 11, 4362 (2020). This work reported µ-TEGs using Si0.97Ge0.03, made by standard Si processing, resulting in a high normalized power of 85µW cm−2 K−2.

    Google Scholar 

  11. Glatz, W., Muntwyler, S. & Hierold, C. Optimization and fabrication of thick flexible polymer based micro thermoelectric generator. Sens. Actuators A 132, 337–345 (2006).

  12. Snyder, G. J., Lim, J. R., Huang, C.-K. & Fleurial, J.-P. Thermoelectric microdevice fabricated by a MEMS-like electrochemical process. Nat. Mater. 2, 528–531 (2003). This work reported the electrochemical MEMS technique by fabricating the vertical-type µ-TEDs with leg diameters and heights of 60µm and 20µm, respectively.

    Google Scholar 

  13. Semenyuk, V. Miniature thermoelectric modules with increased cooling power. In Proc. 2006 25th International Conference on Thermoelectrics 322–326 (IEEE, 2006); https://doi.org/10.1109/ICT.2006.331216

  14. Böttner, H. et al. New thermoelectric components using microsystem technologies. J. Microelectromech. Syst. 13, 414–420 (2004). This work reported a vertical-type µ-TED fabricated by two separate wafers and flip-chip bonding, enabling a net cooling of 10.6 K.

    Google Scholar 

  15. Kim, F. et al. Direct ink writing of three-dimensional thermoelectric microarchitectures. Nat. Electron. 4, 579–587 (2021). This work reported microscale three-dimensional thermoelectric architectures fabricated through the direct writing of particle-based thermoelectric inks.

    Google Scholar 

  16. Glatz, W., Schwyter, E., Durrer, L. & Hierold, C. Bi2Te3-based flexible micro thermoelectric generator with optimized design. J. Microelectromech. Syst. 18, 763–772 (2009).

    Google Scholar 

  17. Skipidarov, S. & Nikitin, M. Thin Film and Flexible Thermoelectric Generators, Devices and Sensors (Springer, 2021).

  18. Zhao, X. et al. A honeycomb-like paper-based thermoelectric generator based on a Bi2Te3/bacterial cellulose nanofiber coating. Nanoscale 11, 17725–17735 (2019).

    Google Scholar 

  19. Yuan, Z. et al. High‐performance micro-radioisotope thermoelectric generator with large-scale integration of multilayer annular arrays through screen printing and stacking coupling. Energy Technol. 9, 2001047 (2021).

    Google Scholar 

  20. Tanwar, A., Lal, S. & Razeeb, K. M. Structural design optimization of micro-thermoelectric generator for wearable biomedical devices. Energies 14, 2339 (2021).

    Google Scholar 

  21. Lara Ramos, D. A. et al. Design guidelines for micro-thermoelectric devices by finite element analysis. Adv. Sustain. Syst. 3, 1800093 (2019).

    Google Scholar 

  22. Kumar, P. M. et al. The design of a thermoelectric generator and its medical applications. Designs 3, 22 (2019).

  23. Tomita, M. et al. Modeling, simulation, fabrication, and characterization of a 10-μW/cm2 class Si-nanowire thermoelectric generator for IoT applications. IEEE Trans. Electron Devices 65, 5180–5188 (2018).

    Google Scholar 

  24. Dunham, M. T. et al. Power density optimization for micro thermoelectric generators. Energy 93, 2006–2017 (2015).

    Google Scholar 

  25. Xing, Y. et al. A device-to-material strategy guiding the ‘double-high’ thermoelectric module. Joule 4, 2475–2483 (2020).

    Google Scholar 

  26. Dhawan, R. et al. Maximizing performance of microelectronic thermoelectric generators with parasitic thermal and electrical resistances. IEEE Trans. Electron Devices 68, 2434–2439 (2021).

    Google Scholar 

  27. Zhang, Q. H. et al. Thermoelectric devices for power generation: recent progress and future challenges: thermoelectric devices for power generation. Adv. Eng. Mater. 18, 194–213 (2016).

    Google Scholar 

  28. Liu, W. & Bai, S. Thermoelectric interface materials: a perspective to the challenge of thermoelectric power generation module. J. Materiomics 5, 321–336 (2019).

    Google Scholar 

  29. Bjørk, R. The universal influence of contact resistance on the efficiency of a thermoelectric generator. J. Electron. Mater. 44, 2869–2876 (2015).

    Google Scholar 

  30. He, R., Schierning, G. & Nielsch, K. Thermoelectric devices: a review of devices, architectures and contact optimization. Adv. Mater. Technol. 3, 1700256 (2018).

    Google Scholar 

  31. Bae, N.-H., Han, S., Lee, K. E., Kim, B. & Kim, S.-T. Diffusion at interfaces of micro thermoelectric devices. Curr. Appl. Phys. 11, S40–S44 (2011).

    Google Scholar 

  32. Taylor, P. J. et al. Controlled improvement in specific contact resistivity for thermoelectric materials by ion implantation. Appl. Phys. Lett. 103, 043902 (2013).

    Google Scholar 

  33. Joshi, G. et al. Pulsed-light surface annealing for low contact resistance interfaces between metal electrodes and bismuth telluride thermoelectric materials. J. Mater. Chem. C 7, 479–483 (2019).

    Google Scholar 

  34. Gupta, R. P. et al. Low resistance ohmic contacts to Bi2Te3 using Ni and Co metallization. J. Electrochem. Soc. 157, H666 (2010).

    Google Scholar 

  35. Yin, M. et al. Low resistance ohmic contact for ZnSb thin film. J. Electron. Mater. 46, 3256–3261 (2017).

    Google Scholar 

  36. Wojtas, N., Rüthemann, L., Glatz, W. & Hierold, C. Optimized thermal coupling of micro thermoelectric generators for improved output performance. Renew. Energy 60, 746–753 (2013).

    Google Scholar 

  37. Semenyuk, V. Thermoelectric micro modules for spot cooling of high density heat sources. In Proc. 2001 20th International Conference on Thermoelectrics 391–396 (IEEE, 2001); https://doi.org/10.1109/ICT.2001.979914

  38. Semenyuk, V. A., Pilipenko, T. V., Albright, G. C., Ioffe, L. A. & Rolls, W. H. Miniature thermoelectric coolers for semiconductor lasers. In AIP Conference Proceedings Vol. 316, 150–153 (AIP, 1994). This work reported a mini-TEC assembled using bulk Bi–Te alloys with leg lengths as short as 110µm and leg cross-sectional areas of 200×300µ.

  39. Kishi, M. et al. Micro thermoelectric modules and their application to wristwatches as an energy source. In Proc. 18th International Conference on Thermoelectrics 301–307 (IEEE, 1999); https://doi.org/10.1109/ICT.1999.843389

  40. Semenyuk, V. Novel thermoelectric microcoolers compatible with electro-optic components. In Proc. 3rd International Energy Conversion Engineering Conference 5730–5741 (American Institute of Aeronautics and Astronautics, 2005); https://doi.org/10.2514/6.2005-5730

  41. Semenyuk, V. Cascade thermoelectric micro modules for spot cooling high power electronic components. In Proc. Twenty-First International Conference on Thermoelectrics 531–534 (IEEE, 2002); https://doi.org/10.1109/ICT.2002.1190372

  42. Qiu, J. et al. 3D printing of highly textured bulk thermoelectric materieals: mechanically robust BiSbTe alloys with superior performance. Energy Environ. Sci. 12, 3106–3117 (2019). This work reported bulk BiSbTe materials prepared by selective laser melting that showed excellent thermoelectric properties and superior mechanical performance, resulting in the realization of mini-TEDs with leg sizes as short as 200 µm.

    Google Scholar 

  43. Rowe, D. M., Morgan, D. V. & Kiely, J. H. Miniature low-power/high-voltage thermoelectric generator. Electron. Lett. 25, 166–168 (1989).

    Google Scholar 

  44. Li, Y., Buddharaju, K., Singh, N., Lo, G. Q. & Lee, S. J. Chip-level thermoelectric power generators based on high-density silicon nanowire array prepared with top-down CMOS technology. IEEE Electron Device Lett. 32, 674–676 (2011).

    Google Scholar 

  45. Li, Y., Buddharaju, K., Tinh, B. C., Singh, N. & Lee, S. J. Improved vertical silicon nanowire based thermoelectric power generator with polyimide filling. IEEE Electron Device Lett. 33, 715–717 (2012).

    Google Scholar 

  46. Shafai, C. & Brett, M. J. A micro-integrated peltier heat pump for localized on-chip temperature control. In Proc. 1996 Canadian Conference on Electrical and Computer Engineering 88–91 (IEEE, 1996); https://doi.org/10.1109/CCECE.1996.548045

  47. Glosch, H., Ashauer, M., Pfeiffer, U. & Lang, W. A thermoelectric converter for energy supply. Sens. Actuators A 74, 246–250 (1999).

  48. Sheen, C.-S. & Chi, S. CMOS compatible thermoelectric infrared sensors. Electron. Lett. 36, 1117–1118 (2000).

    Google Scholar 

  49. Kao, P.-H., Shih, P.-J., Dai, C.-L. & Liu, M.-C. Fabrication and characterization of CMOS-MEMS thermoelectric micro generators. Sensors 10, 1315–1325 (2010).

    Google Scholar 

  50. Strasser, M., Aigner, R., Franosch, M. & Wachutka, G. Miniaturized thermoelectric generators based on poly-Si and poly-SiGe surface micromachining. Sens. Actuators A 978, 535–542 (2002). This work reported the fabrication of a hybrid-type µ-TEG by bipolar CMOS-compatible technology using poly-Si and poly-Si70Ge30 with cavities fabricated beneath the hot-side contacts.

  51. Strasser, M. et al. Micromachined CMOS thermoelectric generators as on-chip power supply. Sens. Actuators A 114, 362–370 (2004).

  52. Huesgen, T., Woias, P. & Kockmann, N. Design and fabrication of MEMS thermoelectric generators with high temperature efficiency. Sens. Actuators A 145–146, 423–429 (2008).

  53. Yang, S. M., Lee, T. & Jeng, C. A. Development of a thermoelectric energy harvester with thermal isolation cavity by standard CMOS process. Sens. Actuators A 153, 244–250 (2009).

  54. Yang, S. M., Wang, J. Y. & Chen, M. D. On the improved performance of thermoelectric generators with low dimensional polysilicon-germanium thermocouples by BiCMOS process. Sens. Actuators A 306, 111924 (2020).

  55. Yang, S. M. & Wang, S. H. Development of a thermoelectric energy generator with double cavity by standard CMOS process. IEEE Sens. J. 21, 250–256 (2021).

    Google Scholar 

  56. Özden, A., Kandemir, A., Ay, F., Perkgöz, N. K. & Sevik, C. Thermal conductivity suppression in nanostructured silicon and germanium nanowires. J. Electron. Mater. 45, 1594–1600 (2016).

    Google Scholar 

  57. Xie, J., Lee, C., Wang, M.-F., Liu, Y. & Feng, H. Characterization of heavily doped polysilicon films for CMOS-MEMS thermoelectric power generators. J. Micromech. Microeng. 19, 125029 (2009).

    Google Scholar 

  58. Xie, J., Lee, C. & Feng, H. Design, fabrication and characterization of CMOS MEMS-based thermoelectric power generators. J. Microelectromech. Syst. 19, 317–324 (2010).

    Google Scholar 

  59. Yu, X. et al. CMOS MEMS-based thermoelectric generator with an efficient heat dissipation path. J. Micromech. Microeng. 22, 105011 (2012).

    Google Scholar 

  60. Su, J. et al. A batch process micromachined thermoelectric energy harvester: fabrication and characterization. J. Micromech. Microeng. 20, 104005 (2010).

    Google Scholar 

  61. Yuan, Z. et al. A planar micro thermoelectric generator with high thermal resistance. Sens. Actuators A 221, 67–76 (2015).

  62. Boukai, A. I. et al. Silicon nanowires as efficient thermoelectric materials. Nature 451, 168–171 (2008).

    Google Scholar 

  63. Hochbaum, A. I. et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–167 (2008).

    Google Scholar 

  64. Noyan, I. D. et al. SiGe nanowire arrays based thermoelectric microgenerator. Nano Energy 57, 492–499 (2019).

    Google Scholar 

  65. Noyan, I. D. et al. All-silicon thermoelectric micro/nanogenerator including a heat exchanger for harvesting applications. J. Power Sources 413, 125–133 (2019).

    Google Scholar 

  66. Bottner, H., Nurnus, J., Schubert, A. & Volkert, F. New high density micro structured thermogenerators for stand alone sensor systems. In Proc. 26th International Conference on Thermoelectrics 306–309 (IEEE, 2007); https://doi.org/10.1109/ICT.2007.4569484

  67. Cornett, J. et al. Fabrication and characterization of Bi2Te3-based chip-scale thermoelectric energy harvesting devices. J. Electron. Mater. 46, 2844–2846 (2017).

    Google Scholar 

  68. Dunham, M. T. et al. Experimental characterization of microfabricated thermoelectric energy harvesters for smart sensor and wearable applications. Adv. Mater. Technol. 3, 1700383 (2018).

    Google Scholar 

  69. Aktakka, E. E. et al. Post-CMOS FinFET integration of bismuth telluride and antimony telluride thin-film-based thermoelectric devices on SoI substrate. IEEE Electron Device Lett. 34, 1334–1336 (2013).

    Google Scholar 

  70. Tan, M., Deng, Y. & Hao, Y. Improved thermoelectric performance of a film device induced by densely columnar Cu electrode. Energy 70, 143–148 (2014).

    Google Scholar 

  71. Glatz, W. & Hierold, C. Flexible micro thermoelectric generator. In Proc. 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS) 89–92 (IEEE, 2007); https://doi.org/10.1109/MEMSYS.2007.4433021

  72. Stordeur, M. & Stark, I. Low power thermoelectric generator-self-sufficient energy supply for micro systems. In Proc. 1997 16th International Conference on Thermoelectrics 575–577 (1997); https://doi.org/10.1109/ICT.1997.667595

  73. Stark, I. & Stordeur, M. New micro thermoelectric devices based on bismuth telluride-type thin solid films. In Proc. Eighteenth International Conference on Thermoelectrics 465–472 (1999); https://doi.org/10.1109/ICT.1999.843432

  74. Weber, J. et al. Coin-size coiled-up polymer foil thermoelectric power generator for wearable electronics. Sens. Actuators A 132, 325–330 (2006).

  75. Haidar, S. A. et al. Deposition and fabrication of sputtered bismuth telluride and antimony telluride for microscale thermoelectric energy harvesters. Thin Solid Films 717, 138444 (2021).

    Google Scholar 

  76. Gross, A. J. et al. Multistage planar thermoelectric microcoolers. J. Microelectromech. Syst. 20, 1201–1210 (2011).

    Google Scholar 

  77. Pelz, U. et al. Fabrication process for micro thermoelectric generators (μTEGs). J. Electron. Mater. 45, 1502–1507 (2016).

    Google Scholar 

  78. Roth, R. et al. Design and characterization of micro thermoelectric cross-plane generators with electroplated Bi2Te3, SbxTey, and reflow soldering. J. Microelectromech. Syst. 23, 961–971 (2014).

  79. Roth, R. et al. Two-layer process for a micro thermoelectric cross-plane generator with electroplating and reflow soldering. In Proc. 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII) 486–489 (IEEE, 2013); https://doi.org/10.1109/Transducers.2013.6626809

  80. Kim, M.-Y. & Oh, T.-S. Thermoelectric thin film device of cross-plane configuration processed by electrodeposition and flip-chip bonding. Mater. Trans. 53, 2160–2165 (2012).

    Google Scholar 

  81. Lal, S., Gautam, D. & Razeeb, K. M. Fabrication of micro-thermoelectric devices for power generation and the thermal management of photonic devices. J. Micromech. Microeng. 29, 065015 (2019).

    Google Scholar 

  82. Molina-Lopez, F. Emerging thermoelectric generators based on printed and flexible electronics technology. In Proc. 2020 IEEE Sensors 1–4 (IEEE, 2020); https://doi.org/10.1109/SENSORS47125.2020.9278922

  83. Bubnova, O. et al. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat. Mater. 10, 429–433 (2011).

    Google Scholar 

  84. Ferhat, S. et al. Organic thermoelectric devices based on a stable n-type nanocomposite printed on paper. Sustain. Energy Fuels 2, 199–208 (2018).

    Google Scholar 

  85. Kim, S. J., We, J. H. & Cho, B. J. A wearable thermoelectric generator fabricated on a glass fabric. Energy Environ. Sci. 7, 1959–1965 (2014).

    Google Scholar 

  86. Han, C., Tan, G., Varghese, T., Kanatzidis, M. G. & Zhang, Y. High-performance PbTe thermoelectric films by scalable and low-cost printing. ACS Energy Lett. 3, 818–822 (2018).

    Google Scholar 

  87. Kim, S. J. et al. High-performance flexible thermoelectric power generator using laser multiscanning lift-off process. ACS Nano 10, 10851–10857 (2016). This work reported a flexible thermoelectric generator produced by a screen-printing technique and a laser multiscanning liftoff process.

    Google Scholar 

  88. Chen, A., Madan, D., Wright, P. K. & Evans, J. W. Dispenser-printed planar thick-film thermoelectric energy generators. J. Micromech. Microeng. 21, 104006 (2011). This work reported dispenser-printed thick film thermoelectric materials for the fabrication of planar and printable thermoelectric energy generators.

    Google Scholar 

  89. Jung, Y. S. et al. Wearable solar thermoelectric generator driven by unprecedentedly high temperature difference. Nano Energy 40, 663–672 (2017).

    Google Scholar 

  90. Kouma, N., Nishino, T. & Tsuboi, O. A high-output-voltage micro-thermoelectric generator having high-aspect-ratio structure. J. Micromech. Microeng. 23, 114005 (2013).

    Google Scholar 

  91. Saeidi-Javash, M., Kuang, W., Dun, C. C. & Zhang, Y. L. 3D conformal printing and photonic sintering of high-performance flexible thermoelectric films using 2D nanoplates. Adv. Funct. Mater. 29, 1901930 (2019).

    Google Scholar 

  92. Hossain, M. S. et al. Recent advances in printable thermoelectric devices: materials, printing techniques and applications. RSC Adv. 10, 8421–8434 (2020).

    Google Scholar 

  93. Zang, J. et al. Printed flexible thermoelectric materials and devices. J. Mater. Chem. A 9, 19439–19464 (2021).

    Google Scholar 

  94. Park, S. H. et al. High-performance shape-engineerable thermoelectric painting. Nat. Commun. 7, 13403 (2016).

    Google Scholar 

  95. Kee, S., Haque, M. A., Corzo, D., Alshareef, H. N. & Baran, D. Self-healing and stretchable 3D-printed organic thermoelectrics. Adv. Funct. Mater. 29, 1905426 (2019).

    Google Scholar 

  96. Corbett, S. et al. Electrodeposited thin-film micro-thermoelectric coolers with extreme heat flux handling and microsecond time response. ACS Appl. Mater. Interfaces 13, 1773–1782 (2021).

    Google Scholar 

  97. Shakouri, A. & Zhang, Yan On-chip solid-state cooling for integrated circuits using thin-film microrefrigerators. IEEE Trans. Compon. Packag. Technol. 28, 65–69 (2005).

    Google Scholar 

  98. Hou, W. et al. Fabrication and excellent performances of Bi0.5Sb1.5Te3/epoxy flexible thermoelectric cooling devices. Nano Energy 50, 766–776 (2018).

    Google Scholar 

  99. Lim, J. R. et al. Thermoelectric microdevice fabrication process and evaluation at the Jet Propulsion Laboratory (JPL). In Proc. Twenty-First International Conference on Thermoelectrics 535–539 (IEEE, 2002); https://doi.org/10.1109/ICT.2002.1190373

  100. Besganz, A. et al. Inkjet printing as a flexible technology for the deposition of thermoelectric composite structures. Procedia Technol. 15, 99–106 (2014).

    Google Scholar 

  101. Choi, H. et al. UV-curable silver electrode for screen-printed thermoelectric generator. Adv. Funct. Mater. 29, 1901505 (2019).

    Google Scholar 

  102. Han, P., Zhang, Z., Xia, Y. & Mei, N. A 920-MHz dual-mode receiver with energy harvesting for UHF RFID tag and IoT. Electronics 9, 1042 (2020).

    Google Scholar 

  103. Guclu, T. & Cuce, E. Thermoelectric coolers (TECs): from theory to practice. J. Electron. Mater. 48, 211–230 (2019).

    Google Scholar 

  104. Pourkiaei, S. M. et al. Thermoelectric cooler and thermoelectric generator devices: a review of present and potential applications, modeling and materials. Energy 186, 115849 (2019).

    Google Scholar 

  105. Liu, C.-K., Chao, Y.-L., Tain, R.-M. & Tain, R.-M. Cooling performance of silicon-based thermoelectric device on high power LED. In Proc. 2005 24th International Conference on Thermoelectrics 53–56 (IEEE, 2005); https://doi.org/10.1109/ICT.2005.1519885

  106. Chowdhury, I. et al. On-chip cooling by superlattice-based thin-film thermoelectrics. Nat. Nanotechnol. 4, 235–238 (2009).

    Google Scholar 

  107. Liu, C.-K., Yu, C.-K., Hsu, C.-Y., Kuo, S.-L. & Dai, M.-J. Thermal performance of the IC package integrated with micro- thermoelectric device. In Proc. 2007 International Microsystems, Packaging, Assembly and Circuits Technology 88–92 (IEEE, 2007); https://doi.org/10.1109/IMPACT.2007.4433574

  108. Liu, C.-K., Dai, M.-J., Yu, C.-K. & Kuo, S.-L. High efficiency silicon-based high power LED package integrated with micro-thermoelectric device. In Proc. 2007 International Microsystems, Packaging, Assembly and Circuits Technology 29–33 (IEEE, 2007); https://doi.org/10.1109/IMPACT.2007.4433562

  109. Bar-Cohen, A. & Wang, P. Thermal management of on-chip hot spot. J. Heat. Transf. 134, 051017 (2012).

    Google Scholar 

  110. Su, Y., Lu, J. B., Villaroman, D., Li, D. Z. & Huang, B. L. Free-standing planar thermoelectric microrefrigerators based on nano-grained SiGe thin films for on-chip refrigeration. Nano Energy 48, 202–210 (2018).

    Google Scholar 

  111. Yan, J. B., Liao, X. P., Yan, D. Y. & Chen, Y. G. Review of micro thermoelectric generator. J. Microelectromech. Syst. 27, 1–18 (2018).

    Google Scholar 

  112. Khan, S., Kim, J., Acharya, S. & Kim, W. Review on the operation of wearable sensors through body heat harvesting based on thermoelectric devices. Appl. Phys. Lett. 118, 200501 (2021).

    Google Scholar 

  113. Douthwaite, M., Koutsos, E., Yates, D. C., Mitcheson, P. D. & Georgiou, P. A thermally powered ISFET array for on-body pH measurement. IEEE Trans. Biomed. Circuits Syst. 11, 1324–1334 (2017).

    Google Scholar 

  114. Watkins, C., Shen, B. & Venkatasubramanian, R. Low-grade-heat energy harvesting using superlattice thermoelectrics for applications in implantable medical devices and sensors. In Proc. 24th International Conference on Thermoelectrics 265–267 (IEEE, 2005); https://doi.org/10.1109/ICT.2005.1519934

  115. Dahiya, A. S. et al. Review—energy autonomous wearable sensors for smart healthcare: a review. J. Electrochem. Soc. 167, 037516 (2020).

    Google Scholar 

  116. Park, H. et al. Energy harvesting using thermoelectricity for IoT (Internet of Things) and e-skin sensors. J. Phys. Energy 1, 042001 (2019).

    Google Scholar 

  117. Shen, T. W., Chang, K. C., Sun, C. M. & Fang, W. L. Performance enhance of CMOS-MEMS thermoelectric infrared sensor by using sensing material and structure design. J. Micromech. Microeng. 29, 025007 (2019).

    Google Scholar 

  118. Xu, D. H., Wang, Y. L., Xiong, B. & Li, T. MEMS-based thermoelectric infrared sensors: a review. Front. Mech. Eng. 12, 557–566 (2017).

    Google Scholar 

  119. Shin, W. et al. Thermoelectric gas sensors with selective combustion catalysts. J. Ceram. Soc. Jpn 127, 57–66 (2019).

    Google Scholar 

  120. Zhu, P. C. et al. Flexible 3D architectured piezo/thermoelectric bimodal tactile sensor array for E-skin application. Adv. Energy Mater. 10, 2001945 (2020).

    Google Scholar 

  121. Wang, X. et al. Design and fabrication of low resistance palm-power generator based on flexible thermoelectric composite film. Synth. Met. 235, 42–48 (2018).

    Google Scholar 

  122. Biswas, K. et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012).

    Google Scholar 

  123. Xu, N., Xu, Y. & Zhu, J. Topological insulators for thermoelectrics. npj Quantum Mater. 2, 51 (2017).

    Google Scholar 

  124. Gooth, J., Schierning, G., Felser, C. & Nielsch, K. Quantum materials for thermoelectricity. MRS Bull. 43, 187–192 (2018).

    Google Scholar 

  125. Liang, J. et al. Flexible thermoelectrics: from silver chalcogenides to full-inorganic devices. Energy Environ. Sci. 12, 2983–2990 (2019).

    Google Scholar 

  126. Shi, X. et al. Room-temperature ductile inorganic semiconductor. Nat. Mater. 17, 421–426 (2018).

    Google Scholar 

  127. LeBlanc, S., Yee, S. K., Scullin, M. L., Dames, C. & Goodson, K. E. Material and manufacturing cost considerations for thermoelectrics. Renew. Sustain. Energy Rev. 32, 313–327 (2014).

    Google Scholar 

  128. Ying, P. et al. Towards tellurium-free thermoelectric modules for power generation from low-grade heat. Nat. Commun. 12, 1121 (2021).

    Google Scholar 

  129. Yee, S. K., LeBlanc, S., Goodson, K. E. & Dames, C. $ per W metrics for thermoelectric power generation: beyond ZT. Energy Environ. Sci. 6, 2561–2571 (2013).

    Google Scholar 

  130. Wu, H., Wu, A. T., Wei, P. & Chen, S. Interfacial reactions in thermoelectric modules. Mater. Res. Lett. 6, 244–248 (2018).

    Google Scholar 

  131. Xing, T. et al. High efficiency GeTe-based materials and modules for thermoelectric power generation. Energy Environ. Sci. 14, 995–1003 (2021).

    Google Scholar 

  132. Kishore, R., Mahajan, R. & Priya, S. Combinatory finite element and artificial neural network model for predicting performance of thermoelectric generator. Energies 11, 2216 (2018).

    Google Scholar 

  133. Zhang, H., Hobbis, D., Nolas, G. S. & LeBlanc, S. Laser additive manufacturing of powdered bismuth telluride. J. Mater. Res. 33, 4031–4039 (2018).

    Google Scholar 

  134. Hyun, W. J., Secor, E. B., Hersam, M. C., Frisbie, C. D. & Francis, L. F. High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics. Adv. Mater. 27, 109–115 (2015).

    Google Scholar 

  135. Bellucci, A. et al. Novel concepts and nanostructured materials for thermionic-based solar and thermal energy converters. Nanotechnology 32, 024002 (2021).

    Google Scholar 

  136. Bottner, H. Micropelt miniaturized thermoelectric devices: small size, high cooling power densities, short response time. In Proc. 2005 24th International Conference on Thermoelectrics 1–8 (IEEE, 2005); https://doi.org/10.1109/ICT.2005.1519873

  137. Lu, Z. et al. Fabrication of flexible thermoelectric thin film devices by inkjet printing. Small 10, 3551–3554 (2014).

    Google Scholar 

  138. Thermally integrated smart photonics systems. CORDIS https://cordis.europa.eu/project/id/644453/reporting (accessed September 2021).

  139. Wang, Y., Shi, Y. G., Mei, D. Q. & Chen, Z. C. Wearable thermoelectric generator to harvest body heat for powering a miniaturized accelerometer. Appl. Energy 215, 690–698 (2018).

    Google Scholar 

  140. Self-powered intelligent thermostatic radiator valve (iTRV). Micropelt http://www.micropelt.com/fileadmin/user_upload/_PDF_004_UK.pdf (accessed September 2021).

  141. El Oualid, S. et al. Innovative design of bismuth-telluride-based thermoelectric micro-generators with high output power. Energy Environ. Sci. 13, 3579–3591 (2020).

    Google Scholar 

Download references

Acknowledgements

We thank X. Ai and R. Uhlemann in IFW Dresden for their helpful technical support, and R. He for valuable feedback and fruitful discussions regarding the manuscript. Q.Z. acknowledges financial support from the Alexander von Humboldt Foundation (no. CHN 1210297 HFST-P). H.R. acknowledges funding from the DFG (Deutsche Forschungsgemeinschaft) within grant no. RE3973/1–1. K.D. and L.W. acknowledge financial support by the strategic project at IFW Dresden on ‘Wireless sensor devices for high temperature applications’.

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote and commented on the manuscript.

Corresponding authors

Correspondence to Heiko Reith or Kornelius Nielsch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Mark Lee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2.

Supplementary Table 1

Device parameters and performance of various micro-thermoelectric coolers.

Supplementary Table 2

Device parameters and performance of various micro-thermoelectric generators.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Deng, K., Wilkens, L. et al. Micro-thermoelectric devices. Nat Electron 5, 333–347 (2022). https://doi.org/10.1038/s41928-022-00776-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-022-00776-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing