Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient spin–orbit torque in magnetic trilayers using all three polarizations of a spin current

An Author Correction to this article was published on 10 June 2022

This article has been updated

Abstract

Spin–orbit coupling can convert a charge current into a spin current, thereby generating a spin–orbit torque (SOT). Energy-efficient, commercially viable SOT technology requires field-free switching of perpendicular magnetization at low current. In heterostructures incorporating ferromagnets, the polarization of spin current consists, in general, of three vectors: \(( {{{{\hat{\mathrm z}}}} \times {{{\hat{\mathrm E}}}}} )\), \({{{\hat{\mathrm m}}}}\) and \({{{\hat{\mathrm m}}}} \times ( {{{{\hat{\mathrm z}}}} \times {{{\hat{\mathrm E}}}}} )\), where \({{{\hat{\mathrm z}}}}\) is the film normal, \({{{\hat{\mathrm E}}}}\) is the electric-field direction and \({{{\hat{\mathrm m}}}}\) is the magnetization direction. Previous studies on SOT have used only part of all the three polarizations, because the two \({{{\hat{\mathrm m}}}}\)-dependent polarizations are mutually orthogonal. Here we show that all the three polarizations can be exploited in systems with ferromagnet/non-magnet/ferromagnet trilayers, having a bottom epitaxial ferromagnet layer with a tilted magnetic easy axis. The approach reduces the field-free SOT switching current compared with approaches that exploit only part of all the three polarizations. We also show that this technique can be used with a sputtered polycrystalline trilayer, illustrating its potential applicability to mass production.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Epi-Co/non-magnet/ferromagnet magnetic trilayers.
Fig. 2: Harmonic Hall measurements of SOTs in trilayer structures.
Fig. 3: Field-free magnetization switching of epi-Co based trilayers.
Fig. 4: Field-free magnetization switching in the poly-CoFeB/Ti/CoFeB trilayer.

Similar content being viewed by others

Data availability

Source data are provided with this paper. The data that support the findings of this study are available from the corresponding authors upon reasonable request.

Change history

References

  1. Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    Article  Google Scholar 

  2. Žutić, I., Fabian, J. & Sarma, S. D. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323 (2004).

    Article  Google Scholar 

  3. Manchon, A. et al. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).

    Article  MathSciNet  Google Scholar 

  4. Ryu, J., Lee, S., Lee, K.-J. & Park, B.-G. Current-induced spin–orbit torques for spintronic applications. Adv. Mater. 32, 1907148 (2020).

    Article  Google Scholar 

  5. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Article  Google Scholar 

  6. Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article  Google Scholar 

  7. Kim, J. et al. Layer thickness dependence of the current-induced effective field vector in Ta|CoFeB|MgO. Nat. Mater. 12, 240–245 (2013).

    Article  Google Scholar 

  8. Garello, K. et al. Symmetry and magnitude of spin–orbit torques in ferromagnetic heterostructures. Nat. Nanotechnol. 8, 587–593 (2013).

    Article  Google Scholar 

  9. Hayashi, M., Kim, J., Yamanouchi, M. & Ohno, H. Quantitative characterization of the spin-orbit torque using harmonic Hall voltage measurements. Phys. Rev. B 89, 144425 (2014).

    Article  Google Scholar 

  10. Baumgartner, M. et al. Spatially and time-resolved magnetization dynamics driven by spin–orbit torques. Nat. Nanotechnol. 12, 980–986 (2017).

    Article  Google Scholar 

  11. Dyakonov, M. I. & Perel, V. I. Current-induced spin orientation of electrons in semiconductors. Phys. Lett. A 35, 459–460 (1971).

    Google Scholar 

  12. Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213 (2015).

    Article  Google Scholar 

  13. Yu, G. et al. Switching of perpendicular magnetization by spin–orbit torques in the absence of external magnetic field. Nat. Nanotechnol. 9, 548–554 (2014).

    Article  Google Scholar 

  14. You, L. et al. Switching of perpendicularly polarized nanomagnets with spin orbit torque without an external magnetic field by engineering a tilted anisotropy. Proc. Natl Acad. Sci. USA 112, 10310–10315 (2015).

    Article  Google Scholar 

  15. MacNeill, D. et al. Control of spin–orbit torques through crystal symmetry in WTe2/ferromagnet bilayers. Nat. Phys. 13, 300–305 (2017).

    Article  Google Scholar 

  16. Liu, L. et al. Symmetry-dependent field-free switching of perpendicular magnetization. Nat. Nanotechnol. 16, 277–282 (2021).

    Article  Google Scholar 

  17. Fukami, S., Zhang, C., Duttagupta, S., Kurenkov, A. & Ohno, H. Magnetization switching by spin–orbit torque in an antiferromagnet–ferromagnet bilayer system. Nat. Mater. 15, 535–542 (2016).

    Article  Google Scholar 

  18. Oh, Y.-W. et al. Field-free switching of perpendicular magnetization through spin–orbit torque in antiferromagnet/ferromagnet/oxide structures. Nat. Nanotechnol. 11, 878–884 (2016).

    Article  Google Scholar 

  19. Lau, Y. C., Betto, D., Rode, K., Coey, J. M. D. & Stamenov, P. Spin–orbit torque switching without an external field using interlayer exchange coupling. Nat. Nanotechnol. 11, 758–762 (2016).

    Article  Google Scholar 

  20. van den Brink, A. et al. Field-free magnetization reversal by spin-Hall effect and exchange bias. Nat. Commun. 7, 10854 (2016).

    Article  Google Scholar 

  21. Cai, K. et al. Electric field control of deterministic current-induced magnetization switching in a hybrid ferromagnetic/ferroelectric structure. Nat. Mater. 16, 712–716 (2017).

    Article  Google Scholar 

  22. Baek, S. C. et al. Spin currents and spin–orbit torques in ferromagnetic trilayers. Nat. Mater. 17, 509–513 (2018).

    Article  Google Scholar 

  23. Amin, V. P., Zemen, J. & Stiles, M. D. Interface-generated spin currents. Phys. Rev. Lett. 121, 136805 (2018).

    Article  Google Scholar 

  24. Oh, Y.-W., Ryu, J., Kang, J. & Park, B.-G. Material and thickness investigation in ferromagnet/Ta/CoFeB trilayers for enhancement of spin–orbit torque and field-free switching. Adv. Electron. Mater. 5, 1900598 (2019).

    Article  Google Scholar 

  25. Lee, K.-S., Lee, S.-W., Min, B.-C. & Lee, K.-J. Threshold current for switching of a perpendicular magnetic layer induced by spin Hall effect. Appl. Phys. Lett. 102, 112410 (2013).

    Article  Google Scholar 

  26. Taniguchi, T., Mitani, S. & Hayashi, M. Critical current destabilizing perpendicular magnetization by the spin Hall effect. Phys. Rev. B 92, 024428 (2015).

    Article  Google Scholar 

  27. Grimaldi, E. et al. Single-shot dynamics of spin–orbit torque and spin transfer torque switching in three-terminal magnetic tunnel junctions. Nat. Nanotechnol. 15, 111–117 (2020).

    Article  Google Scholar 

  28. Krizakova, V., Garello, K., Grimaldi, E., Kar, G. S. & Gambardella, P. Field-free switching of magnetic tunnel junctions driven by spin–orbit torques at sub-ns timescales. Appl. Phys. Lett. 116, 232406 (2020).

    Article  Google Scholar 

  29. Brataas, A., Kent, A. D. & Ohno, H. Current-induced torques in magnetic materials. Nat. Mater. 11, 372–381 (2012).

    Article  Google Scholar 

  30. Hahn, C. et al. Time-resolved studies of the spin-transfer reversal mechanism in perpendicularly magnetized magnetic tunnel junctions. Phys. Rev. B 94, 214432 (2016).

    Article  Google Scholar 

  31. Tomita, H. et al. Single-shot measurements of spin-transfer switching in CoFeB/MgO/CoFeB magnetic tunnel junctions. Appl. Phys. Express 1, 061303 (2008).

    Article  Google Scholar 

  32. Taniguchi, T., Grollier, J. & Stiles, M. D. Spin-transfer torques generated by the anomalous Hall effect and anisotropic magnetoresistance. Phys. Rev. Appl. 3, 044001 (2015).

  33. Iihama, S. et al. Spin-transfer torque induced by the spin anomalous Hall effect. Nat. Electron. 1, 120–123 (2018).

    Article  Google Scholar 

  34. Gibbons, J. D., Macneill, D., Buhrman, R. A. & Ralph, D. C. Reorientable spin direction for spin current produced by the anomalous Hall effect. Phys. Rev. Appl. 9, 064033 (2018).

    Article  Google Scholar 

  35. Bose, A. et al. Observation of anomalous spin torque generated by a ferromagnet. Phys. Rev. Appl. 9, 064026 (2018).

    Article  Google Scholar 

  36. Lifshits, M. B. & Dyakonov, M. I. Swapping spin currents: interchanging spin and flow directions. Phys. Rev. Lett. 103, 186601 (2009).

    Article  Google Scholar 

  37. Mohamed, H. B. M. & Manchon, A. Spin-swapping transport and torques in ultrathin magnetic bilayers. Phys. Rev. Lett. 117, 036601 (2016).

    Article  Google Scholar 

  38. Yang, Y. et al. Anomalous Hall magnetoresistance in a ferromagnet. Nat. Commun. 9, 2255 (2018).

    Article  Google Scholar 

  39. Wang, X., Vanderbilt, D., Yates, J. R. & Souza, I. Fermi-surface calculation of the anomalous Hall conductivity. Phys. Rev. B 76, 195109 (2007).

    Article  Google Scholar 

  40. Amin, V. P., Li, J., Stiles, M. D. & Haney, P. M. Intrinsic spin currents in ferromagnets. Phys. Rev. B 99, 220405(R) (2019).

    Article  Google Scholar 

  41. Lee, D.-K. & Lee, K.-J. Spin-orbit torque switching of perpendicular magnetization in ferromagnetic trilayer. Sci. Rep. 10, 1772 (2020).

    Article  Google Scholar 

  42. Kong, W. et al. All-electrical manipulation of magnetization in magnetic tunnel junction via spin–orbit torque. Appl. Phys. Lett. 116, 162401 (2020).

    Article  Google Scholar 

  43. Seki, T., Iihama, S., Taniguchi, T. & Takanashi, K. Large spin anomalous Hall effect in L10−FePt: symmetry and magnetization switching. Phys. Rev. B 100, 144427 (2019).

    Article  Google Scholar 

  44. Céspedes-Berrocal, D. et al. Current-induced spin torques on single GdFeCo magnetic layers. Adv. Mater. 33, 2007047 (2021).

    Article  Google Scholar 

  45. Koike, Y., Iihama, S. & Mizukami, S. Composition dependence of the spin-anomalous Hall effect in a ferromagnetic Fe–Co alloy. Jpn. J. Appl. Phys. 59, 090907 (2020).

    Article  Google Scholar 

  46. Wang, W. et al. Anomalous spin–orbit torques in magnetic single-layer films. Nat. Nanotechnol. 14, 819–824 (2019).

    Google Scholar 

  47. Kim, K.-W. & Lee, K.-J. Generalized spin drift-diffusion formalism in the presence of spin-orbit interaction of ferromagnets. Phys. Rev. Lett. 125, 207205 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Samsung Electronics (IO200721-07533-01 and IO201019-07699-01) (Development of interfacial SOT materials, theory and modelling of SOT). B.-G.P. acknowledges financial support from the National Research Foundation of Korea (NRF-2020R1A2C2010309). K.-J.L. acknowledges financial support from the National Research Foundation of Korea (NRF-2020M3F3A2A01082591). R.T. was supported by the Graduate Program in Spintronics at Tohoku University. M.K. and J.N. acknowledges financial support from the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) in Grant-in-Aid for Scientific Research (grant no. 15H05699). J.M.Y. was supported by KAIST-funded Global Singularity Research Program for 2019 and the Wearable Platform Materials Technology Center (WMC) funded by the National Research Foundation of Korea (NRF-2016R1A5A1009926). J.Y.P. specially thanks NRF funded by the Korean Government for scholarship support through the Global PhD Fellowship Program (2018H1A2A1060105).

Author information

Authors and Affiliations

Authors

Contributions

B.-G.P. and J.R. planned the study. J.R., R.T., M.K. and J.N. grew the epitaxial samples. J.R., R.T., G.C. and J.K. fabricated the devices and performed the electrical and magnetic measurements. J.Y.P., H.B.J. and J.M.Y. performed the crystallographic characterization. S.-J.K. and K.-J.L. carried out the theoretical calculations. J.R., B.-G.P. and K.-J.L. performed the data analysis. J.R., K.-J.L. and B.-G.P. wrote the manuscript with comments from all the co-authors.

Corresponding authors

Correspondence to Kyung-Jin Lee or Byong-Guk Park.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Jingsheng Chen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–25, Discussion and Table 1.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryu, J., Thompson, R., Park, J.Y. et al. Efficient spin–orbit torque in magnetic trilayers using all three polarizations of a spin current. Nat Electron 5, 217–223 (2022). https://doi.org/10.1038/s41928-022-00735-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-022-00735-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing