Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A room-temperature gate-tunable bipolar valley Hall effect in molybdenum disulfide/tungsten diselenide heterostructures

Abstract

Two-dimensional semiconductors have a valley degree of freedom that could be used as a platform for future optoelectronic devices. The valley Hall effect, caused by electrons in different valleys having opposite Berry curvatures, is important for making such devices, but has only been reported with plasmonic structures or at cryogenic temperatures, limiting practical application. Here we report the observation of the valley Hall effect at room temperature in a molybdenum disulfide/tungsten diselenide van der Waals heterostructure. We show that the magnitude and polarity of the valley Hall effect in the heterostructure are gate tunable, which can be attributed to the contribution of the opposite valley Hall effect from electrons and holes in different layers. We use this gate tunability to create a bipolar valleytronic transistor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: VHE at room temperature.
Fig. 2: Gate-dependence measurement of VHE and longitudinal conductivity at 240 K.
Fig. 3: Gate dependence of PC at 240 K.
Fig. 4: Gate-dependence mechanism of VHE and PC.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007).

    Article  Google Scholar 

  2. Schaibley, J. R. et al. Valleytronics in 2D materials. Nat. Rev. Mater. 1, 16055 (2016).

    Article  Google Scholar 

  3. Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article  Google Scholar 

  4. Liu, W. et al. Generation of helical topological exciton-polaritons. Science 370, 600–604 (2020).

    Article  MathSciNet  Google Scholar 

  5. Li, L. et al. Room-temperature valleytronic transistor. Nat. Nanotechnol. 15, 743–749 (2020).

    Article  Google Scholar 

  6. Sundaram, G. & Niu, Q. Wave-packet dynamics in slowly perturbed crystals: gradient corrections and Berry-phase effects. Phys. Rev. B 59, 14915–14925 (1999).

    Article  Google Scholar 

  7. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article  Google Scholar 

  8. Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    Article  MathSciNet  Google Scholar 

  9. Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).

    Article  Google Scholar 

  10. Lee, J., Mak, K. F. & Shan, J. Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nat. Nanotechnol. 11, 421–425 (2016).

    Article  Google Scholar 

  11. Yu, H., Liu, G.-B. & Yao, W. Brightened spin-triplet interlayer excitons and optical selection rules in van der Waals heterobilayers. 2D Mater. 5, 035021 (2018).

    Article  Google Scholar 

  12. Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 3, 887 (2012).

    Article  Google Scholar 

  13. Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494–498 (2012).

    Article  Google Scholar 

  14. Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7, 490–493 (2012).

    Article  Google Scholar 

  15. Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 8, 634–638 (2013).

    Article  Google Scholar 

  16. Sallen, G. et al. Robust optical emission polarization in MoS2 monolayers through selective valley excitation. Phys. Rev. B 86, 081301 (2012).

    Article  Google Scholar 

  17. Ubrig, N. et al. Microscopic origin of the valley Hall effect in transition metal dichalcogenides revealed by wavelength-dependent mapping. Nano Lett. 17, 5719–5725 (2017).

    Article  Google Scholar 

  18. Gorbachev, R. V. et al. Detecting topological currents in graphene superlattices. Science 346, 448–451 (2014).

    Article  Google Scholar 

  19. Kang, J., Tongay, S., Zhou, J., Li, J. & Wu, J. Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 102, 012111 (2013).

    Article  Google Scholar 

  20. Liang, Y., Huang, S., Soklaski, R. & Yang, L. Quasiparticle band-edge energy and band offsets of monolayer of molybdenum and tungsten chalcogenides. Appl. Phys. Lett. 103, 042106 (2013).

    Article  Google Scholar 

  21. Özçelik, V. O., Azadani, J. G., Yang, C., Koester, S. J. & Low, T. Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching. Phys. Rev. B 94, 035125 (2016).

    Article  Google Scholar 

  22. Karni, O. et al. Infrared interlayer exciton emission in MoS2/WSe2 heterostructures. Phys. Rev. Lett. 123, 247402 (2019).

    Article  Google Scholar 

  23. Huang, Z. et al. Robust room temperature valley Hall effect of interlayer excitons. Nano Lett. 20, 1345–1351 (2020).

    Article  Google Scholar 

  24. Jiang, C. et al. Microsecond dark-exciton valley polarization memory in two-dimensional heterostructures. Nat. Commun. 9, 753 (2018).

    Article  Google Scholar 

  25. Rivera, P. et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351, 688–691 (2016).

    Article  Google Scholar 

  26. Yu, T. & Wu, M. W. Valley depolarization due to intervalley and intravalley electron-hole exchange interactions in monolayer MoS2. Phys. Rev. B 89, 205303 (2014).

    Article  Google Scholar 

  27. Rivera, P. et al. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 13, 1004–1015 (2018).

    Article  Google Scholar 

  28. Wilson, N. R. et al. Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Sci. Adv. 3, e1601832 (2017).

    Article  Google Scholar 

  29. Latini, S., Winther, K. T., Olsen, T. & Thygesen, K. S. Interlayer excitons and band alignment in MoS2/hBN/WSe2 van der Waals heterostructures. Nano Lett. 17, 938–945 (2017).

    Article  Google Scholar 

  30. Li, H.-M. et al. Metal-semiconductor barrier modulation for high photoresponse in transition metal dichalcogenide field effect transistors. Sci. Rep. 4, 4041 (2014).

    Article  Google Scholar 

  31. Yi, Y. et al. A study of lateral Schottky contacts in WSe2 and MoS2 field effect transistors using scanning photocurrent microscopy. Nanoscale 7, 15711–15718 (2015).

    Article  Google Scholar 

  32. Lee, C.-H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014).

    Article  Google Scholar 

  33. Jeong, T. Y. et al. Spectroscopic studies of atomic defects and bandgap renormalization in semiconducting monolayer transition metal dichalcogenides. Nat. Commun. 10, 3825 (2019).

    Article  Google Scholar 

  34. Liu, L. et al. Electrical control of circular photogalvanic spin-valley photocurrent in a monolayer semiconductor. ACS Appl. Mater. Interfaces 11, 3334–3341 (2019).

    Article  Google Scholar 

  35. Rasmita, A. et al. Tunable geometric photocurrent in van der Waals heterostructure. Optica 7, 1204–1208 (2020).

    Article  Google Scholar 

  36. Gunawan, O. et al. Carrier-resolved photo-Hall effect. Nature 575, 151–155 (2019).

    Article  Google Scholar 

  37. Liu, Y. et al. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 557, 696–700 (2018).

    Article  Google Scholar 

  38. Wang, Y. et al. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568, 70–74 (2019).

    Article  Google Scholar 

  39. Hu, G. et al. Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface. Nat. Photon. 13, 467–472 (2019).

    Article  Google Scholar 

  40. Sun, L. et al. Separation of valley excitons in a MoS2 monolayer using a subwavelength asymmetric groove array. Nat. Photon. 13, 180–184 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the discussion with F. Wang and W. Yao. W.-b.G acknowledges financial support from the Singapore National Research Foundation through its Competitive Research Program (CRP award Nos. NRF-CRP21-2018-0007 and NRF-CRP22-2019-0004), QEP programme and Singapore Ministry of Education (MOE2016-T3-1-006 (S)). Q.X. gratefully acknowledges National Natural Science Foundation of China (no. 12020101003), support from the State Key Laboratory of Low-Dimensional Quantum Physics and Start-up Grant from Tsinghua University. C.J. acknowledges the National Natural Science Foundation of China (no. 61974075); the Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin; and the Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education of China. H.M. gratefully acknowledges the National Natural Science Foundation of China (no. 61704121), China Scholarship Council (no. 201709345003) and the Tianjin Natural Science Foundation (no. 19JCQNJC00700).

Author information

Authors and Affiliations

Authors

Contributions

C.J. and W.-b.G. conceived the project. C.J., Z.Z. and Z.H. performed the measurements. H.M., Q.T., S. Lai, N.W., S. Liu and X.L. fabricated the devices. C.J., Z.Z. and A.R. analysed the data. A.R. performed the theoretical analysis. C.J., H.M., A.R. and W.-b.G. wrote the manuscript. T.Y., Q.X. and W-b.G. supervised the project. All the authors contributed to the discussion of the results.

Corresponding authors

Correspondence to Qihua Xiong or Wei-bo Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Electronics thanks Yanping Liu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Gate dependence measurement of VHE and longitudinal conductivity at 240 K in MoS2/WSe2 with 60° twist angle (AB-stacked).

(a) Optical image of the sample. The red dot is the 220 μW, 726 nm optical excitation location. The electronic configuration is as in Supplementary Fig. 4 in the Supplementary Information (source(drain): electrode 4(2), Hall electrodes: 1 and 3). (b) VH as a function of Vx and Vg. (c) The αH (proportional to VHE) and βH (proportional to CPC) as a function of Vg. The shaded area represents a 95% confidence interval. (d) Gate dependence of the longitudinal conductivity (σxx).

Extended Data Fig. 2 Gate dependence measurement of VHE and longitudinal conductivity at 240 K in MoS2/WSe2 with 20° twist VH angle.

(a) Optical image of the sample. The red dot is the 220 μW, 726 nm optical excitation location. The electronic configuration is as in Supplementary Fig. 4 in the Supplementary Information (source(drain): electrode 4(2), Hall electrodes: 1 and 3). (b) The VH as a function of Vx and Vg. (c) The αH (proportional to VHE) and βH (proportional to CPC) as a function of Vg. The shaded area represents a 95% confidence interval. (d) Gate dependence of the longitudinal conductivity (σxx).

Extended Data Fig. 3 Microscopic processes involved in band shift-induced valley current generation and modulation in MoS2/WSe2 heterostructure.

The yellow (blue) colour represents the MoS2 (WSe2) layer. Filled (empty) circles represent photogenerated electrons (holes). (a) Process 1: optical selection rule and process 2: charge transfer. (1) A circularly polarized light creates photogenerated electrons and holes in WSe2 with wavevector \({\bf{k}}_0\). (2) The electron undergoes charge transfer from WSe2 to MoS2, while the hole stays in WSe2. The optically induced valley current density in MoS2 (\({\bf {J}}_{{{\mathrm{v}}}}^{{{\mathrm{M}}}}\)) and WSe2 (\({\bf{J}}_{{{\mathrm{v}}}}^{{{\mathrm{W}}}}\)) have opposite directions. (b) Charge transfer process in the k space. The yellow (blue) arrows are the MoS2 (WSe2) photogenerated electron wavevectors \({\bf{k}}_i^{{{\mathrm{M}}}}\) (\({{\bf{k}}_i^{{{\mathrm{W}}}}} = {\bf{k}}_0\)), with respect to the MoS2 (WSe2) conduction band minimum (CBM). Due to the twist angle \(\theta\), the wavevector at MoS2 CBM (\({{{\mathrm{K}}}}_{{{\mathrm{M}}}}^{{{\mathrm{C}}}}\)) differs from the wavevector at WSe2 CBM (\({{{\mathrm{K}}}}_{{{\mathrm{W}}}}^{{{\mathrm{C}}}}\)) by \({\mathbf{\Delta}}_i^{{{{\mathrm{rot}}}}}\) (solid black arrows, \({\mathbf{\Delta}}_{3(2)}^{{{{\mathrm{rot}}}}} = R_{ + ( - )2\pi /3}{\mathbf{\Delta}}_1^{{{{\mathrm{rot}}}}}\)). The dashed black arrows (\({\mathbf{\Delta}}_i^{{{{\mathrm{ct}}}}}\)) are the C3 symmetry allowed wavevector change during the charge transfer (that is, \({\mathbf{\Delta}}_{3(2)}^{{{{\mathrm{ct}}}}} = R_{ + ( - )2\pi /3}{\mathbf{\Delta}}_1^{{{{\mathrm{ct}}}}}\)). Inset: addition of wavevectors in MoS2 and WSe2. Regardless of the twist angle, the effective velocity of photogenerated electrons in MoS2 has the same direction as in WSe2. (c) Process 3: current collection. The valley current (\(I_{{{\mathrm{v}}}}\)) is obtained by summing up the valley current from each layer (\(I_{{{\mathrm{v}}}}^{{{\mathrm{M}}}}\)and \(I_{{{\mathrm{v}}}}^{{{\mathrm{W}}}}\)), which depends on the valley current density as well the layer-dependent carrier transport efficiency (\(\eta _{{{{\mathrm{M(W)}}}}}(V_{{{\mathrm{g}}}})\) for MoS2(WSe2)). (d) Illustration of valley current gate dependence. The valley current polarity is gate tunable regardless of the twist angle. Here, \(\gamma _{{{{\mathrm{WM}}}}} = 0.9\) is used. The shaded area, region I, and region II definitions follow the ones in the main text Fig. 4.

Supplementary information

Supplementary Information

Supplementary Figs. 1–23 and Notes 1–6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., Rasmita, A., Ma, H. et al. A room-temperature gate-tunable bipolar valley Hall effect in molybdenum disulfide/tungsten diselenide heterostructures. Nat Electron 5, 23–27 (2022). https://doi.org/10.1038/s41928-021-00686-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-021-00686-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing