Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Wireless power transfer based on novel physical concepts

Abstract

Wireless power transfer—the transmission of electromagnetic energy without physical connectors such as wires or waveguides—typically exploits electromagnetic field control methods that were first proposed decades ago and requires some essential parameters (such as efficiency) to be sacrificed in favour of others (such as stability). In recent years, novel approaches to electromagnetic field manipulation have been developed that can be used to create advanced forms of wireless power transfer. Here we review the development of novel physical effects and materials for wireless power transfer. We explore techniques based on coherent perfect absorption, parity–time symmetry and exceptional points, and on-site power generation. We also explore the use of metamaterials and metasurfaces in wireless power transfer, and the use of acoustic power transfer. Finally, we highlight potential routes for the further development of wireless power transfer technology.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Conventional physical mechanisms of WPT.
Fig. 2: Novel power transfer mechanisms.
Fig. 3: Scattering anomalies for WPT.
Fig. 4: Metastructures in different dimensions.
Fig. 5: APT.

References

  1. 1.

    Carlson, W. B. Tesla, Inventor of the Electric Age (Princeton Univ. Press, 2013).

  2. 2.

    Seifel, M. J. Wizard. The Life and Times of Nikola Tesla: Biography of a Genius (Citadel, 1996).

  3. 3.

    Tesla, N. The transmission of electric energy without wires. Electr. World Eng. 43, 23760–23761 (1904).

    Google Scholar 

  4. 4.

    Rappaport, T. S., Woerner, B. D. & Reed, J. H. Wireless Personal Communications: Trends and Challenges (Springer Science and Business Media, 2012).

  5. 5.

    Hui, S. Y. R., Zhong, W. & Lee, C. K. A critical review of recent progress in mid-range wireless power transfer. IEEE Trans. Power Electron. 29, 4500–4511 (2014).

    Article  Google Scholar 

  6. 6.

    Siqi, L. & Mi, C. C. Wireless power transfer for electric vehicle applications. IEEE J. Emerg. Sel. Top. Power Electron. 3, 4–17 (2015).

    Article  Google Scholar 

  7. 7.

    Song, M., Belov, P. & Kapitanova, P. Wireless power transfer inspired by the modern trends in electromagnetics. Appl. Phys. Rev. 4, 021102 (2017).

    Article  Google Scholar 

  8. 8.

    Kim, S. et al. Ambient RF energy-harvesting technologies for self-sustainable standalone wireless sensor platforms. Proc. IEEE 102, 1649–1666 (2014).

    Article  Google Scholar 

  9. 9.

    Krasnok, A. et al. Anomalies in light scattering. Adv. Opt. Photon. 11, 892 (2019).

    Article  Google Scholar 

  10. 10.

    Chen, H. T., Taylor, A. J. & Yu, N. A review of metasurfaces: physics and applications. Rep. Prog. Phys. 79, 076401 (2016).

    Article  Google Scholar 

  11. 11.

    Glybovski, S. B., Tretyakov, S. A., Belov, P. A., Kivshar, Y. S. & Simovski, C. R. Metasurfaces: from microwaves to visible. Phys. Rep. 634, 1–72 (2016).

    MathSciNet  Article  Google Scholar 

  12. 12.

    Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

    Article  Google Scholar 

  13. 13.

    Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nat. Mater. 11, 917–924 (2012).

    Article  Google Scholar 

  14. 14.

    Engheta, N. & Ziolkowski, R. Metamaterials: Physics and Engineering Explorations (John Wiley, 2006).

  15. 15.

    Assawaworrarit, S., Yu, X. & Fan, S. Robust wireless power transfer using a nonlinear parity–time-symmetric circuit. Nature 546, 387–390 (2017). In this work, the concept of a PT-symmetric WPT system was proposed.

    Article  Google Scholar 

  16. 16.

    Zhou, J., Zhang, B., Xiao, W., Qiu, D. & Chen, Y. Nonlinear parity–time-symmetric model for constant efficiency wireless power transfer: application to a drone-in-flight wireless charging platform. IEEE Trans. Ind. Electron. 66, 4097–4107 (2019).

    Article  Google Scholar 

  17. 17.

    Ra’Di, Y. et al. On-site wireless power generation. IEEE Trans. Antennas Propag. 66, 4260–4268 (2018). In this work, the concept of self-oscillating nonlinear systems for robust wireless power transfer was proposed.

    Article  Google Scholar 

  18. 18.

    Dong, Z., Li, Z., Yang, F., Qiu, C. W. & Ho, J. S. Sensitive readout of implantable microsensors using a wireless system locked to an exceptional point. Nat. Electron. 2, 335–342 (2019).

    Article  Google Scholar 

  19. 19.

    Sakhdari, M., Hajizadegan, M., Zhong, Q., Christodoulides, D. N. & Chen, P. Experimental observation of PT symmetry breaking near divergent exceptional points. Phys. Rev. Lett. 123, 193901 (2019).

    Article  Google Scholar 

  20. 20.

    Krasnok, A., Baranov, D. G., Generalov, A., Li, S. & Alù, A. Coherently enhanced wireless power transfer. Phys. Rev. Lett. 120, 143901 (2018). In this work, the concept of a coherently enhanced WPT system was proposed.

    Article  Google Scholar 

  21. 21.

    Baranov, D. G., Krasnok, A., Shegai, T., Alù, A. & Chong, Y. Coherent perfect absorbers: linear control of light with light. Nat. Rev. Mater. 2, 17064 (2017).

    Article  Google Scholar 

  22. 22.

    Krasnok, A. Coherently driven and superdirective antennas. Electronics 8, 845 (2019).

    Article  Google Scholar 

  23. 23.

    Roes, M. G. L., Duarte, J. L., Hendrix, M. A. M. & Lomonova, E. A. Acoustic energy transfer: a review. IEEE Trans. Ind. Electron. 60, 242–248 (2013).

    Article  Google Scholar 

  24. 24.

    Awal, M. R., Jusoh, M., Sabapathy, T., Kamarudin, M. R. & Rahim, R. A. State-of-the-art developments of acoustic energy transfer. Int. J. Antennas Propag. 2016, 3072528 (2016).

    Article  Google Scholar 

  25. 25.

    Ra’di, Y., Krasnok, A. & Alù, A. Virtual critical coupling. ACS Photon. 7, 1468–1475 (2020).

    Article  Google Scholar 

  26. 26.

    Sample, A. P., Meyer, D. A. & Smith, J. R. Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer. IEEE Trans. Ind. Electron. 58, 544–554 (2011).

    Article  Google Scholar 

  27. 27.

    Kurs, A. et al. Wireless power transfer via strongly coupled magnetic resonances. Science 317, 83–86 (2007).

    MathSciNet  Article  Google Scholar 

  28. 28.

    Lu, X., Wang, P., Niyato, D., Kim, D. I. & Han, Z. Wireless charging technologies: fundamentals, standards, and network applications. IEEE Commun. Surv. Tutor. 18, 1413–1452 (2016).

    Article  Google Scholar 

  29. 29.

    Lu, F., Zhang, H. & Mi, C. A review on the recent development of capacitive wireless power transfer technology. Energies 10, 1752 (2017).

    Article  Google Scholar 

  30. 30.

    Lu, F., Zhang, H., Hofmann, H. & Mi, C. A double-sided LCLC-compensated capacitive power transfer system for electric vehicle charging. IEEE Trans. Power Electron. 30, 6011–6014 (2015).

    Article  Google Scholar 

  31. 31.

    Andreou, A. G. Capacitive inter-chip data and power transfer for 3-D VLSI. IEEE Trans. Circuits Syst. II Express Briefs 53, 1348–1352 (2006).

    Article  Google Scholar 

  32. 32.

    Piipponen, K. V. T., Sepponen, R. & Eskelinen, P. A biosignal instrumentation system using capacitive coupling for power and signal isolation. IEEE Trans. Biomed. Eng. 54, 1822–1828 (2007).

    Article  Google Scholar 

  33. 33.

    Sodagar, A. M. & Amiri, P. Capacitive coupling for power and data telemetry to implantable biomedical microsystems. In 2009 Fourth International IEEE/EMBS Conference on Neural Engineering 411–414 (IEEE, 2009); https://doi.org/10.1109/NER.2009.5109320

  34. 34.

    Landis, G. A. Applications for space power by laser transmission. SPIE Proc. 2121, 252–255 (1994).

    Article  Google Scholar 

  35. 35.

    Xia, M. & Aissa, S. On the efficiency of far-field wireless power transfer. IEEE Trans. Signal Process. 63, 2835–2847 (2015).

    MathSciNet  MATH  Article  Google Scholar 

  36. 36.

    Garnica, J., Chinga, R. A. & Lin, J. Wireless power transmission: from far field to near field. Proc. IEEE 101, 1321–1331 (2013).

    Article  Google Scholar 

  37. 37.

    Shinohara, N. Wireless Power Transfer via Radiowaves (Wiley, 2014).

  38. 38.

    Chong, Y. D., Ge, L., Cao, H. & Stone, A. D. Coherent perfect absorbers: time-reversed lasers. Phys. Rev. Lett. 105, 53901 (2010).

    Article  Google Scholar 

  39. 39.

    Bender, C. M. & Boettcher, S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998).

    MathSciNet  MATH  Article  Google Scholar 

  40. 40.

    Bender, C. M., Brody, D. C. & Jones, H. F. Must a Hamiltonian be Hermitian? Am. J. Phys. 71, 1095–1102 (2003).

    MathSciNet  MATH  Article  Google Scholar 

  41. 41.

    El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11–19 (2018).

    Article  Google Scholar 

  42. 42.

    Li, Y. et al. Anti-parity–time symmetry in diffusive systems. Science 364, 170–173 (2019).

    MathSciNet  MATH  Article  Google Scholar 

  43. 43.

    Schindler, J., Li, A., Zheng, M. C., Ellis, F. M. & Kottos, T. Experimental study of active LRC circuits with PT symmetries. Phys. Rev. A 84, 040101 (2011).

    Article  Google Scholar 

  44. 44.

    Schindler, J. et al. PT-symmetric electronics. J. Phys. A 45, 444029 (2012).

    MATH  Article  Google Scholar 

  45. 45.

    Abdelatty, O., Wang, X. & Mortazawi, A. Position-insensitive wireless power transfer based on nonlinear resonant circuits. IEEE Trans. Microw. Theory Tech. 67, 3844–3855 (2019).

    Article  Google Scholar 

  46. 46.

    Liu, F., Chowkwale, B., Jayathurathnage, P. & Tretyakov, S. Pulsed self-oscillating nonlinear systems for robust wireless power transfer. Phys. Rev. Appl. 12, 054040 (2019).

    Article  Google Scholar 

  47. 47.

    Li, L., Liu, H., Zhang, H. & Xue, W. Efficient wireless power transfer system integrating with metasurface for biological applications. IEEE Trans. Ind. Electron. 65, 3230–3239 (2017).

    Article  Google Scholar 

  48. 48.

    Song, M. et al. Smart table based on a metasurface for wireless power transfer. Phys. Rev. Appl. 11, 054046 (2019).

    Article  Google Scholar 

  49. 49.

    Pham, T. S., Ranaweera, A. K., Lam, V. D. & Lee, J.-W. Experiments on localized wireless power transmission using a magneto-inductive wave two-dimensional metamaterial cavity. Appl. Phys. Express 9, 044101 (2016).

    Article  Google Scholar 

  50. 50.

    Pham, T. S., Ranaweera, A. K., Ngo, D. V. & Lee, J. W. Analysis and experiments on Fano interference using a 2D metamaterial cavity for field localized wireless power transfer. J. Phys. D 50, 305102 (2017).

    Article  Google Scholar 

  51. 51.

    Lang, H. D. & Sarris, C. D. Optimization of wireless power transfer systems enhanced by passive elements and metasurfaces. IEEE Trans. Antennas Propag. 65, 5462–5474 (2017).

    Article  Google Scholar 

  52. 52.

    Younesiraad, H. & Bemani, M. Analysis of coupling between magnetic dipoles enhanced by metasurfaces for wireless power transfer efficiency improvement. Sci. Rep. 8, 14865 (2018).

    Article  Google Scholar 

  53. 53.

    Markvart, A. et al. Metasurface for near-field wireless power transfer with reduced electric field leakage. IEEE Access 8, 40224–40231 (2020).

    Article  Google Scholar 

  54. 54.

    Ranaweera, A. L. A. K., Pham, T. S., Bui, H. N., Ngo, V. & Lee, J.-W. An active metasurface for field-localizing wireless power transfer using dynamically reconfigurable cavities. Sci. Rep. 9, 11735 (2019).

    Article  Google Scholar 

  55. 55.

    Wang, B. et al. Experiments on wireless power transfer with metamaterials. Appl. Phys. Lett. 98, 254101 (2011).

    Article  Google Scholar 

  56. 56.

    Huang, D., Urzhumov, Y., Smith, D. R., Hoo Teo, K. & Zhang, J. Magnetic superlens-enhanced inductive coupling for wireless power transfer. J. Appl. Phys. 111, 64902 (2012).

    Article  Google Scholar 

  57. 57.

    Lipworth, G. et al. Magnetic metamaterial superlens for increased range wireless power transfer. Sci. Rep. 4, 3642 (2014).

    Article  Google Scholar 

  58. 58.

    Bui, H. N., Pham, T. S., Ngo, V. & Lee, J.-W. Investigation of various cavity configurations for metamaterial-enhanced field-localizing wireless power transfer. J. Appl. Phys. 122, 93102 (2017).

    Article  Google Scholar 

  59. 59.

    Krasnok, A., Tymchenko, M. & Alù, A. Nonlinear metasurfaces: a paradigm shift in nonlinear optics. Mater. Today 21, 8–21 (2018).

    Article  Google Scholar 

  60. 60.

    Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    Article  Google Scholar 

  61. 61.

    Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016).

    Article  Google Scholar 

  62. 62.

    Dang, X., Jayathurathnage, P., Tretyakov, S. A. & Simovski, C. R. Self-tuning multi-transmitter wireless power transfer to freely positioned receivers. IEEE Access 8, 119940–119950 (2020).

    Article  Google Scholar 

  63. 63.

    Gupta, A., Goel, V. & Yadav, V. Conversion of sound to electric energy. Int. J. Sci. Eng. Res. 5, 2146–2149 (2014).

    Google Scholar 

  64. 64.

    Assawaworrarit, S. & Fan, S. Robust and efficient wireless power transfer using a switch-mode implementation of a nonlinear parity–time symmetric circuit. Nat. Electron. 3, 273–279 (2020).

    Article  Google Scholar 

  65. 65.

    Sakhdari, M., Hajizadegan, M. & Chen, P. Robust extended-range wireless power transfer using a higher-order PT-symmetric platform. Phys. Rev. Res 2, 013152 (2020).

    Article  Google Scholar 

  66. 66.

    Yang, M., Ye, Z., Farhat, M. & Chen, P.-Y. Enhanced radio-frequency sensors based on a self-dual emitter–absorber. Phys. Rev. Appl. 15, 014026 (2021).

    Article  Google Scholar 

  67. 67.

    Farhat, M., Yang, M., Ye, Z. & Chen, P.-Y. PT-symmetric absorber-laser enables electromagnetic sensors with unprecedented sensitivity. ACS Photon. 7, 2080–2088 (2020).

    Article  Google Scholar 

  68. 68.

    Feng, G. & Sit, J. J. An injection-locked wireless power transfer transmitter with automatic maximum efficiency tracking. IEEE Trans. Ind. Electron. 68, 5733–5743 (2021).

    Article  Google Scholar 

  69. 69.

    Xu, L., Chen, Q., Ren, X., Wong, S.-C. & Tse, C. K. Self-oscillating resonant converter with contactless power transfer and integrated current sensing transformer. IEEE Trans. Power Electron. 32, 4839–4851 (2017).

    Article  Google Scholar 

  70. 70.

    Ahn, D. & Hong, S. Wireless power transmission with self-regulated output voltage for biomedical implant. IEEE Trans. Ind. Electron. 61, 2225–2235 (2014).

    Article  Google Scholar 

  71. 71.

    Xiao, Z., Ra’di, Y., Tretyakov, S. & Alù, A. Microwave tunneling and robust information transfer based on parity–time-symmetric absorber–emitter pairs. Research 2019, 7108494 (2019).

    Article  Google Scholar 

  72. 72.

    Lapine, M. & Tretyakov, S. Contemporary notes on metamaterials. IET Microw. Antennas Propag. 1, 3–11 (2007).

    Article  Google Scholar 

  73. 73.

    Kim, H. & Seo, C. Highly efficient wireless power transfer using metamaterial slab with zero refractive property. Electron. Lett. 50, 1158–1160 (2014).

    Article  Google Scholar 

  74. 74.

    Che, B.-J. et al. Omnidirectional non-radiative wireless power transfer with rotating magnetic field and efficiency improvement by metamaterial. Appl. Phys. A 116, 1579–1586 (2014).

    Article  Google Scholar 

  75. 75.

    Yoo, Y. J. et al. Experimental realization of tunable metamaterial hyper-transmitter. Sci. Rep. 6, 33416 (2016).

    Article  Google Scholar 

  76. 76.

    Wu, Q. et al. Wireless power transfer based on magnetic metamaterials consisting of assembled ultra-subwavelength meta-atoms. Europhys. Lett. 109, 68005 (2015).

    Article  Google Scholar 

  77. 77.

    Chen, J.-F. et al. Application of ultra-thin assembled planar metamaterial for wireless power transfer system. Prog. Electromagn. Res. 65, 153–162 (2016).

    Article  Google Scholar 

  78. 78.

    Cheng, Y. Z. et al. Indefinite-permeability metamaterial lens with finite size for miniaturized wireless power transfer system. AEU Int. J. Electron. Commun. 70, 1282–1287 (2016).

    Article  Google Scholar 

  79. 79.

    Chabalko, M. J. & Sample, A. P. Electromagnetic time reversal focusing of near field waves in metamaterials. Appl. Phys. Lett. 109, 263901 (2016).

    Article  Google Scholar 

  80. 80.

    Navau, C., Prat-Camps, J., Romero-Isart, O., Cirac, J. I. & Sanchez, A. Long-distance transfer and routing of static magnetic fields. Phys. Rev. Lett. 112, 253901 (2014).

    Article  Google Scholar 

  81. 81.

    Ahn, D., Kiani, M. & Ghovanloo, M. Enhanced wireless power transmission using strong paramagnetic response. IEEE Trans. Magn. 50, 96–103 (2013).

    Article  Google Scholar 

  82. 82.

    Gamez Rodriguez, E. S., RamRakhyani, A. K., Schurig, D. & Lazzi, G. Compact low-frequency metamaterial design for wireless power transfer efficiency enhancement. IEEE Trans. Microw. Theory Tech. 64, 1644–1654 (2016).

    Article  Google Scholar 

  83. 83.

    Song, M., Belov, P. & Kapitanova, P. Wireless power transfer based on dielectric resonators with colossal permittivity. Appl. Phys. Lett. 109, 223902 (2016).

    Article  Google Scholar 

  84. 84.

    Song, M., Iorsh, I., Kapitanova, P., Nenasheva, E. & Belov, P. Wireless power transfer based on magnetic quadrupole coupling in dielectric resonators. Appl. Phys. Lett. 108, 023902 (2016).

    Article  Google Scholar 

  85. 85.

    Pham, T. S., Bui, H. N. & Lee, J.-W. Wave propagation control and switching for wireless power transfer using tunable 2-D magnetic metamaterials. J. Magn. Magn. Mater. 485, 126–135 (2019).

    Article  Google Scholar 

  86. 86.

    Cannon, B. L., Hoburg, J. F., Stancil, D. D. & Goldstein, S. C. Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers. IEEE Trans. Power Electron. 24, 1819–1825 (2009).

    Article  Google Scholar 

  87. 87.

    Song, J., Liu, M. & Ma, C. Analysis and design of a high-efficiency 6.78-MHz wireless power transfer system with scalable number of receivers. IEEE Trans. Ind. Electron. 67, 8281–8291 (2020).

    Article  Google Scholar 

  88. 88.

    Liu, W. et al. Multi-frequency multi-power one-to-many wireless power transfer system. IEEE Trans. Magn. 55, 8001609 (2019).

    Google Scholar 

  89. 89.

    Zhao, C. & Costinett, D. GaN-based dual-mode wireless power transfer using multifrequency programmed pulse width modulation. IEEE Trans. Ind. Electron. 64, 9165–9176 (2017).

    Article  Google Scholar 

  90. 90.

    Liu, M. & Chen, M. Dual-band wireless power transfer with reactance steering network and reconfigurable receivers. IEEE Trans. Power Electron. 35, 496–507 (2020).

    Article  Google Scholar 

  91. 91.

    Dai, Z., Fang, Z., Huang, H., He, Y. & Wang, J. Selective omnidirectional magnetic resonant coupling wireless power transfer with multiple-receiver system. IEEE Access 6, 19287–19294 (2018).

    Article  Google Scholar 

  92. 92.

    Kim, Y. J., Ha, D., Chappell, W. J. & Irazoqui, P. P. Selective wireless power transfer for smart power distribution in a miniature-sized multiple-receiver system. IEEE Trans. Ind. Electron. 63, 1853–1862 (2016).

    Article  Google Scholar 

  93. 93.

    Song, M. et al. Multi-mode metamaterial-inspired resonator for near-field wireless power transfer. Appl. Phys. Lett. 117, 83501 (2020).

    Article  Google Scholar 

  94. 94.

    Jayathurathnage, P., Dang, X., Simovski C. & Tretyakov, S. Self-tuning omnidirectional wireless power transfer using double toroidal helix coils. IEEE Trans. Ind. Electron. https://doi.org/10.1109/TIE.2021.3097663 (2021).

  95. 95.

    Maslovski, S., Tretyakov, S. & Alitalo, P. Near-field enhancement and imaging in double planar polariton-resonant structures. J. Appl. Phys. 96, 1293–1300 (2004).

    Article  Google Scholar 

  96. 96.

    Alitalo, P., Simovski, C., Viitanen, A. & Tretyakov, S. Near-field enhancement and subwavelength imaging in the optical region using a pair of two-dimensional arrays of metal nanospheres. Phys. Rev. B 74, 235425 (2006).

    Article  Google Scholar 

  97. 97.

    Brown, W. C. The history of wireless power transmission. Sol. Energy 56, 3–21 (1996).

    Article  Google Scholar 

  98. 98.

    Lipworth, G. S. et al. A large planar holographic reflectarray for Fresnel-zone microwave wireless power transfer at 5.8 GHz. In 2018 IEEE/MTT-S International Microwave Symposium—IMS 964–967 (IEEE, 2018).

  99. 99.

    Safari, A. & Akdoğan, E. K. (eds) Piezoelectric and Acoustic Materials for Transducer Applications (Springer, 2008).

  100. 100.

    Smith, R. et al. Design and fabrication of nanoscale ultrasonic transducers. J. Phys. Conf. Ser. 353, 12001 (2012).

    Article  Google Scholar 

  101. 101.

    Kim, K. et al. Biodegradable, electro-active chitin nanofiber films for flexible piezoelectric transducers. Nano Energy 48, 275–283 (2018).

    Article  Google Scholar 

  102. 102.

    Richards, C. D., Anderson, M. J., Bahr, D. F. & Richards, R. F. Efficiency of energy conversion for devices containing a piezoelectric component. J. Micromech. Microeng. 14, 717 (2004).

    Article  Google Scholar 

  103. 103.

    Qiu, Y. et al. Piezoelectric micromachined ultrasound transducer (PMUT) arrays for integrated sensing, actuation and imaging. Sensors 15, 8020–8041 (2015).

    Article  Google Scholar 

  104. 104.

    Ergun, A. S., Yaralioglu, G. G. & Khuri-Yakub, B. T. Capacitive micromachined ultrasonic transducers: theory and technology. J. Aerosp. Eng. 16, 76–84 (2003).

    Article  Google Scholar 

  105. 105.

    Salim, M. S., Abd Malek, M. F., Heng, R. B. W., Juni, K. M. & Sabri, N. Capacitive micromachined ultrasonic transducers: technology and application. J. Med. Ultrasound 20, 8–31 (2012).

    Article  Google Scholar 

  106. 106.

    Johnson, J. et al. Medical imaging using capacitive micromachined ultrasonic transducer arrays. Ultrasonics 40, 471–476 (2002).

    Article  Google Scholar 

  107. 107.

    Hajati, A., Latev, D. & Gardner, D. 3D MEMS piezoelectric ultrasound transducer technology. In 2013 Joint IEEE International Symposium on Applications of Ferroelectric and Workshop on Piezoresponse Force Microscopy (ISAF/PFM) 231–235 (IEEE, 2013).

  108. 108.

    Surappa, S., Satir, S. & Degertekin, F. L. A capacitive ultrasonic transducer based on parametric resonance. Appl. Phys. Lett. 111, 43503 (2017).

    Article  Google Scholar 

  109. 109.

    Surappa, S., Tao, M. & Degertekin, F. L. Analysis and design of capacitive parametric ultrasonic transducers for efficient ultrasonic power transfer based on a 1-D lumped model. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65, 2103–2112 (2018).

    Article  Google Scholar 

  110. 110.

    Tseng, V. F.-G., Bedair, S. S. & Lazarus, N. Phased array focusing for acoustic wireless power transfer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65, 39–49 (2017).

    Article  Google Scholar 

  111. 111.

    Bakhtiari-Nejad, M., Elnahhas, A., Hajj, M. R. & Shahab, S. Acoustic holograms in contactless ultrasonic power transfer systems: modeling and experiment. J. Appl. Phys. 124, 244901 (2018).

    Article  Google Scholar 

  112. 112.

    Hui, Y., Nan, T., Sun, N. X. & Rinaldi, M. High resolution magnetometer based on a high frequency magnetoelectric MEMS-CMOS oscillator. J. Microelectromechanical Syst. 24, 134–143 (2014).

    Article  Google Scholar 

  113. 113.

    Das, J., Song, Y.-Y., Mo, N., Krivosik, P. & Patton, C. E. Electric-field-tunable low loss multiferroic ferrimagnetic–ferroelectric heterostructures. Adv. Mater. 21, 2045–2049 (2009).

    Article  Google Scholar 

  114. 114.

    Sun, N. X. & Srinivasan, G. Voltage control of magnetism in multiferroic heterostructures and devices. Spin 2, 1240004 (2012).

  115. 115.

    Nan, T., Hui, Y., Rinaldi, M. & Sun, N. X. Self-biased 215 MHz magnetoelectric NEMS resonator for ultra-sensitive DC magnetic field detection. Sci. Rep. 3, 1985 (2013).

    Article  Google Scholar 

  116. 116.

    Nan, T. et al. Acoustically actuated ultracompact NEMS magnetoelectric antennas. Nat. Commun. 8, 296 (2017).

    Article  Google Scholar 

  117. 117.

    Denisov, A. & Yeatman, E. Ultrasonic vs. inductive power delivery for miniature biomedical implants. In 2010 International Conference on Body Sensor Networks 84–89 (IEEE, 2010).

  118. 118.

    Khan, S. R., Pavuluri, S. K., Cummins, G. & Desmulliez, M. P. Y. Wireless power transfer techniques for implantable medical devices: a review. Sensors 20, 3487 (2020).

    Article  Google Scholar 

  119. 119.

    Koshelev, K., Favraud, G., Bogdanov, A., Kivshar, Y. & Fratalocchi, A. Nonradiating photonics with resonant dielectric nanostructures. Nanophotonics 8, 725–745 (2019).

    Article  Google Scholar 

  120. 120.

    Zanganeh, E. et al. Anapole meta-atoms: nonradiating electric and magnetic sources. Phys. Rev. Lett. 127, 096804 (2021).

    Article  Google Scholar 

  121. 121.

    Gongora, J. S. T., Miroshnichenko, A. E., Kivshar, Y. S. & Fratalocchi, A. Anapole nanolasers for mode-locking and ultrafast pulse generation. Nat. Commun. 8, 15535 (2017).

    Article  Google Scholar 

  122. 122.

    Monticone, F., Sounas, D., Krasnok, A. & Alù, A. Can a nonradiating mode be externally excited? Nonscattering states versus embedded eigenstates. ACS Photon. 6, 3108–3114 (2019).

    Article  Google Scholar 

  123. 123.

    Bykov, D. A., Bezus, E. A. & Doskolovich, L. L. Bound states in the continuum and strong phase resonances in integrated Gires–Tournois interferometer. Nanophotonics 9, 83–92 (2020).

    Article  Google Scholar 

  124. 124.

    Zhen, B., Hsu, C. W., Lu, L., Stone, A. D. & Soljačić, M. Topological nature of optical bound states in the continuum. Phys. Rev. Lett. 113, 257401 (2014).

    Article  Google Scholar 

  125. 125.

    Doeleman, H. M., Monticone, F., Den Hollander, W., Alù, A. & Koenderink, A. F. Experimental observation of a polarization vortex at an optical bound state in the continuum. Nat. Photon. 12, 397–401 (2018).

    Article  Google Scholar 

  126. 126.

    Bulgakov, E. N. & Maksimov, D. N. Topological bound states in the continuum in arrays of dielectric spheres. Phys. Rev. Lett. 118, 2861–2865 (2017).

    Article  Google Scholar 

  127. 127.

    Zhang, Y. et al. Observation of polarization vortices in momentum space. Phys. Rev. Lett. 120, 186103 (2018).

    Article  Google Scholar 

  128. 128.

    Jin, J. et al. Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering. Nature 574, 501–504 (2019).

    Article  Google Scholar 

  129. 129.

    Yin, X., Jin, J., Soljačić, M., Peng, C. & Zhen, B. Observation of topologically enabled unidirectional guided resonances. Nature 580, 467–471 (2020).

    Article  Google Scholar 

  130. 130.

    Sounas, D. L. & Alù, A. Non-reciprocal photonics based on time modulation. Nat. Photon. 11, 774–783 (2017).

    Article  Google Scholar 

  131. 131.

    Mock, A., Sounas, D. & Alù, A. Magnet-free circulator based on spatiotemporal modulation of photonic crystal defect cavities. ACS Photon. 6, 2056–2066 (2019).

    Article  Google Scholar 

  132. 132.

    Li, H., Moussa, H., Sounas, D. & Alù, A. Parity–time symmetry based on time modulation. Phys. Rev. Appl. 14, 31002 (2020).

    Article  Google Scholar 

  133. 133.

    Li, H., Mekawy, A. & Alù, A. Beyond Chu’s limit with Floquet impedance matching. Phys. Rev. Lett. 123, 164102 (2019).

    Article  Google Scholar 

  134. 134.

    Darabi, A., Ni, X., Leamy, M. & Alù, A. Reconfigurable Floquet elastodynamic topological insulator based on synthetic angular momentum bias. Sci. Adv. 6, eaba8656 (2020).

    Article  Google Scholar 

  135. 135.

    Fleury, R., Khanikaev, A. B. & Alù, A. Floquet topological insulators for sound. Nat. Commun. 7, 11744 (2016).

    Article  Google Scholar 

  136. 136.

    Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photon. 6, 782–787 (2012).

    Article  Google Scholar 

  137. 137.

    Dutt, A. et al. A single photonic cavity with two independent physical synthetic dimensions. Science 367, 59–64 (2020).

    Article  Google Scholar 

  138. 138.

    Nassar, H., Chen, H., Norris, A. N. & Huang, G. L. Quantization of band tilting in modulated phononic crystals. Phys. Rev. B 97, 014305 (2018).

    Article  Google Scholar 

  139. 139.

    Jayathurathnage, P. et al. Time-varying components for enhancing wireless transfer of power and information. Phys. Rev. Appl. 16, 014017 (2021).

    Article  Google Scholar 

  140. 140.

    Song, J. et al. Wireless power transfer via topological modes in dimer chains. Phys. Rev. Appl. 15, 014009 (2021).

    Article  Google Scholar 

  141. 141.

    Feis, J., Stevens, C. J. & Shamonina, E. Wireless power transfer through asymmetric topological edge states in diatomic chains of coupled meta-atoms. Appl. Phys. Lett. 117, 134106 (2020).

    Article  Google Scholar 

  142. 142.

    Zhang, L. et al. Demonstration of topological wireless power transfer. Sci. Bull. 66, 974–980 (2021).

  143. 143.

    Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    MathSciNet  Article  Google Scholar 

  144. 144.

    Rivet, E. et al. Constant-pressure sound waves in non-Hermitian disordered media. Nat. Phys. 14, 942–947 (2018).

    Article  Google Scholar 

  145. 145.

    Hu, G., Krasnok, A., Mazor, Y., Qiu, C. W. & Alù, A. Moiré hyperbolic metasurfaces. Nano Lett. 20, 3217–3224 (2020).

    Article  Google Scholar 

  146. 146.

    Hu, G. et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 582, 209–213 (2020).

    Article  Google Scholar 

  147. 147.

    Zhang, Q. et al. Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the Natural Science Foundation of China (62101154) and Natural Science Foundation of Heilongjiang Province of China (LH2021F013). The section ‘New concepts of WPT’ was supported by the Russian Science Foundation (project 20-72-10090), and the section ‘Metamaterials and metasurfaces for WPT’ was supported by the Russian Science Foundation (project 21-79-30038). This work is partially supported by the Academy of Finland (Academy of Finland postdoctoral researcher grant 333479). M.S. acknowledges support from the Fundamental Research Funds for the Central Universities (3072021CFJ0802) and Research Funds for the Key Laboratory of Advanced Marine Communication and Information Technology of the Ministry of Industry and Information Technology (AMCIT21V2).

Author information

Affiliations

Authors

Contributions

M.S., P.J., C.S., S.T. and A.K. wrote the sections ‘Conventional WPT systems’ and ‘New concepts of WPT’. P.J., C.S., S.T. and A.K. wrote the section ‘Scattering anomalies for WPT’. M.S., E.Z. and P.B. wrote the section ‘Metamaterials and metasurfaces for WPT’. M.K., P.S., P.B. and P.K. wrote the section ‘Acoustic WPT’. All authors contributed to writing ‘Outlook’ and to the editing of the paper. A.K. managed the project.

Corresponding authors

Correspondence to Mingzhao Song or Alex Krasnok.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Electronics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion and Fig. 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, M., Jayathurathnage, P., Zanganeh, E. et al. Wireless power transfer based on novel physical concepts. Nat Electron 4, 707–716 (2021). https://doi.org/10.1038/s41928-021-00658-x

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing