Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A cryogenic electro-optic interconnect for superconducting devices

Abstract

A major challenge to the scalability of cryogenic computing platforms is the heat load associated with the growing number of electrical cable connections between the superconducting circuitry and the room-temperature environment. Compared with electrical cables, optical fibres have significantly lower thermal conductivity and are widely used in modern telecommunications. However, optical modulation at cryogenic temperatures remains relatively unexplored. Here we report the cryogenic electro-optical readout of a superconducting electromechanical circuit using a commercial titanium-doped lithium niobate modulator. We demonstrate coherent spectroscopy by measuring optomechanically induced transparency and incoherent thermometry by encoding the mechanical sidebands in an optical signal. We also show that our modulators can maintain their room-temperature Pockels coefficient at 800 mK. Further optimization of the modulator design—for example, by using longer waveguides and materials with a higher Pockels coefficient—could reduce the added noise of our setup to similar levels as current semiconductor microwave amplifiers.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Principle of a cryogenic electro-optical interconnect for readout of superconducting devices.
Fig. 2: Cryogenic characterization of an LiNbO3 PM.
Fig. 3: Electro-optic readout of a coherent microwave spectrum of a superconducting electromechanical system.
Fig. 4: Electro-optic readout of an incoherent microwave spectrum of a superconducting electromechanical system.

Data availability

The data used to produce the plots within this paper are available on Zenodo (https://doi.org/10.5281/zenodo.4449948). All other data used in this study are available from the corresponding author on reasonable request.

Code availability

The code used to produce the plots within this paper is available on Zenodo (https://doi.org/10.5281/zenodo.4449948).

References

  1. 1.

    Winzer, P. J., Neilson, D. T. & Chraplyvy, A. R. Fiber-optic transmission and networking: the previous 20 and the next 20 years. Opt. Express 26, 24190–24239 (2018).

    Google Scholar 

  2. 2.

    Kachris, C. & Tomkos, I. A Survey on optical interconnects for data centers. IEEE Commun. Surveys Tuts. 14, 1021–1036 (2012).

    Google Scholar 

  3. 3.

    Cheng, Q., Bahadori, M., Glick, M., Rumley, S. & Bergman, K. Recent advances in optical technologies for data centers: a review. Optica 5, 1354–1370 (2018).

    Google Scholar 

  4. 4.

    Blumenthal, D. J. et al. All-optical label swapping networks and technologies. J. Lightwave Technol. 18, 2058–2075 (2000).

    Google Scholar 

  5. 5.

    Thomson, D. et al. Roadmap on silicon photonics. J. Opt. 18, 073003 (2016).

    Google Scholar 

  6. 6.

    Sun, C. et al. Single-chip microprocessor that communicates directly using light. Nature 528, 534–538 (2015).

    Google Scholar 

  7. 7.

    Miller, D. A. B. Optical interconnects to silicon. IEEE J. Sel. Topics Quantum Electron. 6, 1312–1317 (2000).

  8. 8.

    Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum information: an outlook. Science 339, 1169–1174 (2013).

    Google Scholar 

  9. 9.

    Martinis, J. M., Devoret, M. H. & Clarke, J. Quantum Josephson junction circuits and the dawn of artificial atoms. Nat. Phys. 16, 234–237 (2020).

    Google Scholar 

  10. 10.

    Blais, A., Girvin, S. M. & Oliver, W. D. Quantum information processing and quantum optics with circuit quantum electrodynamics. Nat. Phys. 16, 247–256 (2020).

    Google Scholar 

  11. 11.

    Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    Google Scholar 

  12. 12.

    Krinner, S. et al. Engineering cryogenic setups for 100-qubit scale superconducting circuit systems. EPJ Quantum Technol. 6, 2 (2019).

    Google Scholar 

  13. 13.

    Lauk, N. et al. Perspectives on quantum transduction. Quantum Sci. Technol. 5, 020501 (2020).

    Google Scholar 

  14. 14.

    Lecocq, F. et al. Control and readout of a superconducting qubit using a photonic link. Nature 591, 575–579 (2021).

    Google Scholar 

  15. 15.

    Jiang, W. et al. Lithium niobate piezo-optomechanical crystals. Optica 6, 845–853 (2019).

    Google Scholar 

  16. 16.

    Jiang, W. et al. Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency. Nat. Commun. 11, 1166 (2020).

    Google Scholar 

  17. 17.

    Bartholomew, J. G. et al. On-chip coherent microwave-to-optical transduction mediated by ytterbium in YVO4. Nat. Commun. 11, 3266 (2020).

    Google Scholar 

  18. 18.

    Higginbotham, A. P. et al. Harnessing electro-optic correlations in an efficient mechanical converter. Nat. Phys. 14, 1038–1042 (2018).

    Google Scholar 

  19. 19.

    Forsch, M. et al. Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state. Nat. Phys. 16, 69–74 (2020).

    Google Scholar 

  20. 20.

    Arnold, G. et al. Converting microwave and telecom photons with a silicon photonic nanomechanical interface. Nat. Commun. 11, 4460 (2020).

    Google Scholar 

  21. 21.

    Andrews, R. W. et al. Bidirectional and efficient conversion between microwave and optical light. Nat. Phys. 10, 321–326 (2014).

    Google Scholar 

  22. 22.

    Chu, Y. & Gröblacher, S. A perspective on hybrid quantum opto- and electromechanical systems. Appl. Phys. Lett. 117, 150503 (2020).

    Google Scholar 

  23. 23.

    Mirhosseini, M., Sipahigil, A., Kalaee, M. & Painter, O. Superconducting qubit to optical photon transduction. Nature 588, 599–603 (2020).

    Google Scholar 

  24. 24.

    Tsang, M. Cavity quantum electro-optics. Phys. Rev. A 81, 063837 (2010).

    Google Scholar 

  25. 25.

    Rueda, A. et al. Efficient microwave to optical photon conversion: an electro-optical realization. Optica 3, 597–604 (2016).

    Google Scholar 

  26. 26.

    Rueda, A., Sedlmeir, F., Kumari, M., Leuchs, G. & Schwefel, H. G. L. Resonant electro-optic frequency comb. Nature 568, 378–381 (2019).

    Google Scholar 

  27. 27.

    Hease, W. et al. Bidirectional electro-optic wavelength conversion in the quantum ground state. PRX Quantum 1, 020315 (2020).

    Google Scholar 

  28. 28.

    Fan, L. et al. Superconducting cavity electro-optics: a platform for coherent photon conversion between superconducting and photonic circuits. Sci. Adv. 4, eaar4994 (2018).

    Google Scholar 

  29. 29.

    McKenna, T. P. et al. Cryogenic microwave-to-optical conversion using a triply resonant lithium-niobate-on-sapphire transducer. Optica 7, 1737–1745 (2020).

    Google Scholar 

  30. 30.

    Holzgrafe, J. et al. Cavity electro-optics in thin-film lithium niobate for efficient microwave-to-optical transduction. Optica 7, 1714–1720 (2020).

    Google Scholar 

  31. 31.

    Clerk, A. A., Lehnert, K. W., Bertet, P., Petta, J. R. & Nakamura, Y. Hybrid quantum systems with circuit quantum electrodynamics. Nat. Phys. 16, 257–267 (2020).

    Google Scholar 

  32. 32.

    Wooten, E. L. et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J. Sel. Topics Quantum Electron. 6, 69–82 (2000).

    Google Scholar 

  33. 33.

    Pospieszalski, M. W., Weinreb, S., Norrod, R. D. & Harris, R. FETs and HEMTs at cryogenic temperatures—their properties and use in low-noise amplifiers. IEEE Trans. Microw. Theory Techn. 36, 552–560 (1988).

    Google Scholar 

  34. 34.

    Duh, K. G. et al. Ultra-low-noise cryogenic high-electron-mobility transistors. IEEE Trans. Electron Devices 35, 249–256 (1988).

    Google Scholar 

  35. 35.

    Weis, S. et al. Optomechanically induced transparency. Science 330, 1520–1523 (2010).

    Google Scholar 

  36. 36.

    Zhou, X. et al. Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics. Nat. Phys. 9, 179–184 (2013).

    Google Scholar 

  37. 37.

    Safavi-Naeini, A. H. et al. Electromagnetically induced transparency and slow light with optomechanics. Nature 472, 69–73 (2011).

    Google Scholar 

  38. 38.

    Teufel, J. D. et al. Circuit cavity electromechanics in the strong-coupling regime. Nature 471, 204–208 (2011).

    Google Scholar 

  39. 39.

    Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).

    Google Scholar 

  40. 40.

    He, Y. et al. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica 6, 1138–1144 (2019).

    Google Scholar 

  41. 41.

    Thiele, F. et al. Cryogenic electro-optic polarisation conversion in titanium in-diffused lithium niobate waveguides. Opt. Express 28, 28961–28968 (2020).

    Google Scholar 

  42. 42.

    Chakraborty, U. et al. Cryogenic operation of silicon photonic modulators based on the DC Kerr effect. Optica 7, 1385–1390 (2020).

    Google Scholar 

  43. 43.

    Abel, S. et al. Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon. Nat. Mater. 18, 42–47 (2019).

    Google Scholar 

  44. 44.

    Eltes, F. et al. An integrated optical modulator operating at cryogenic temperatures. Nat. Mater. 19, 1164–1168 (2020).

    Google Scholar 

  45. 45.

    Braginski, A. I. Superconductor electronics: status and outlook. J. Supercond. Nov. Magn. 32, 23–44 (2019).

    Google Scholar 

  46. 46.

    Macklin, C. et al. A near–quantum-limited Josephson traveling-wave parametric amplifier. Science 350, 307–310 (2015).

    Google Scholar 

  47. 47.

    Siddiqi, I. et al. RF-driven Josephson bifurcation amplifier for quantum measurement. Phys. Rev. Lett. 93, 207002 (2004).

    Google Scholar 

  48. 48.

    Clerk, A. A., Devoret, M. H., Girvin, S. M., Marquardt, F. & Schoelkopf, R. J. Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155–1208 (2010).

    MathSciNet  MATH  Google Scholar 

  49. 49.

    Herzog, C., Poberaj, G. & Günter, P. Electro-optic behavior of lithium niobate at cryogenic temperatures. Opt. Commun. 281, 793–796 (2008).

    Google Scholar 

  50. 50.

    Morse, J. D. et al. Characterization of lithium niobate electro-optic modulators at cryogenic temperatures. Proc. SPIE Design, Simulation, and Fabrication of Optoelectronic Devices and Circuits 2150, 283–291 (1994).

    Google Scholar 

  51. 51.

    McConaghy, C., Lowry, M., Becker, R. & Kincaid, B. The performance of pigtailed annealed proton exchange LiNbO3 modulators at cryogenic temperatures. IEEE Photon. Technol. Lett. 8, 1480–1482 (1996).

    Google Scholar 

  52. 52.

    Yoshida, K., Kanda, Y. & Kohjiro, S. A traveling-wave-type LiNbO3 optical modulator with superconducting electrodes. IEEE Trans. Microw. Theory Techn. 47, 1201–1205 (1999).

    Google Scholar 

  53. 53.

    How to measure BER (Keysight Technologies, 2018).

  54. 54.

    Teufel, J. D. et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011).

    Google Scholar 

  55. 55.

    Wollman, E. E. et al. Quantum squeezing of motion in a mechanical resonator. Science 349, 952–955 (2015).

    MathSciNet  MATH  Google Scholar 

  56. 56.

    Ockeloen-Korppi, C. et al. Stabilized entanglement of massive mechanical oscillators. Nature 556, 478–482 (2018).

    Google Scholar 

  57. 57.

    Bernier, N. R. et al. Nonreciprocal reconfigurable microwave optomechanical circuit. Nat. Commun. 8, 604 (2017).

    Google Scholar 

  58. 58.

    Tóth, L. D., Bernier, N. R., Nunnenkamp, A., Feofanov, A. K. & Kippenberg, T. J. A dissipative quantum reservoir for microwave light using a mechanical oscillator. Nat. Phys. 13, 787–793 (2017).

    Google Scholar 

  59. 59.

    Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014).

    Google Scholar 

  60. 60.

    Bernier, N. R. Multimode microwave circuit optomechanics as a platform to study coupled quantum harmonic oscillators. Dissertation, EPFL (2018).

  61. 61.

    Marquardt, F., Harris, J. & Girvin, S. M. Dynamical multistability induced by radiation pressure in high-finesse micromechanical optical cavities. Phys. Rev. Lett. 96, 103901 (2006).

    Google Scholar 

  62. 62.

    Carmon, T., Rokhsari, H., Yang, L., Kippenberg, T. J. & Vahala, K. J. Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode. Phys. Rev. Lett. 94, 223902 (2005).

    Google Scholar 

  63. 63.

    Cha, E. et al. A 300-μw cryogenic HEMT LNA for quantum computing. 2020 IEEE/MTT-S International Microwave Symposium (IMS) 1299–1302 (2020).

  64. 64.

    Cha, E. et al. InP HEMTs for sub-mW cryogenic low-noise amplifiers. IEEE Electron Device Lett. 41, 1005–1008 (2020).

    Google Scholar 

  65. 65.

    Wong, W.-T., Hosseini, M., Rücker, H. & Bardin, J. C. A 1 mW cryogenic LNA exploiting optimized SiGe HBTs to achieve an average noise temperature of 3.2 K from 4–8 GHz. 2020 IEEE/MTT-S International Microwave Symposium (IMS) 181–184 (2020).

Download references

Acknowledgements

We thank N. J. Engelsen for thorough reading of the manuscript. This work was supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 732894 (FET Proactive HOT), and by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 835329). This work was supported by funding from the Swiss National Science Foundation under grant agreement NCCR-QSIT:51NF40_185902 and Sinergia grant no. 186364 (QuantEOM). The circuit electromechanical device was fabricated in the Center of MicroNanoTechnology (CMi) at EPFL.

Author information

Affiliations

Authors

Contributions

T.J.K. conceived the experiment. A.Y. and I.S. performed the measurements, with contributions from Y.J.J., N.R.B., A.L., P.U. and L.Q. A.Y. and Y.J.J. analysed the data with contributions from N.R.B. A.Y. fabricated the superconducting electromechanical sample. A.Y., I.S. and T.J.K. wrote the manuscript. T.J.K. initiated and supervised the project.

Corresponding author

Correspondence to Tobias J. Kippenberg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informationNature Electronics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Illustration of the gain characterization procedure.

a, Propagation of the DUT signal through the system. b, Power spectral density of the HEMT output. c, Power spectral density of the optical heterodyne detector.

Extended Data Fig. 2 Schematic signal flow when pre-amplifier is used.

Pre-amplifier gain, GPA ~102, and transduction gain, G. The equivalent added noise referred to the input after the second amplification stage is ~(GPAG)−1.

Extended Data Fig. 3 Heat dissipation and temperature gradients.

a, Relative temperature difference between PM box and heat exchanger, on 800 mK flange during a cooldown. The gray datapoints correspond to specific periods of pulse precooling and mixture condensation, where the temperature is unstable. b, Measurement of heating due to optical dissipation when the phase modulator is mounted on the 800 mK flange. c, Measurement of heating using a calibrated resistive heater mounted on the 800 mK flange.

Extended Data Fig. 4 HEMT noise characterization.

a, Experimental setup and schematic signal flow. A noise source thermalized at temperature T feeds the HEMT with Johnson noise. The measured power spectral density is proportional to the noise from the source plus the HEMT added noise. The noise source is a thermally isolated copper block containing a cryogenic resistive heater, a thermometer, and a 50Ω load. The noise source is connected to a 12 GHz low-pass filter. b, The added noise of the HEMT versus frequency. Inset: An example of the measured power spectral density at 6 GHz vs. T. The dashed line is to a fit Eq. (11).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Youssefi, A., Shomroni, I., Joshi, Y.J. et al. A cryogenic electro-optic interconnect for superconducting devices. Nat Electron 4, 326–332 (2021). https://doi.org/10.1038/s41928-021-00570-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing