Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photonic link from single-flux-quantum circuits to room temperature

Abstract

Broadband, energy-efficient signal transfer between a cryogenic and room-temperature environment has been a major bottleneck for superconducting quantum and classical logic circuits. Photonic links promise to overcome this challenge by offering simultaneous high bandwidth and low thermal load. However, the development of cryogenic electro-optic modulators—a key component for the photonic readout of electrical signals—has been stifled by the stringent requirements of superconducting circuits. Rapid single-flux-quantum circuits, for example, operate with a tiny signal amplitude of only a few millivolts, far below the volt-level signal used in conventional circuits. Here we demonstrate one of the first direct optical readouts of a rapid single-flux-quantum circuit without additional electrical amplification enabled by a novel superconducting electro-optic modulator featuring a record-low half-wave voltage Vπ of 42 mV on a 1-m-long superconducting electro-optic modulator. Leveraging the low ohmic loss of superconductors, we break the fundamental Vπ–bandwidth trade-off and demonstrate an electro-optic bandwidth up to 17 GHz on a 0.2-m-long superconducting electro-optic modulator at cryogenic temperatures. Our work presents a viable solution towards high-bandwidth signal transfer between future large-scale superconducting circuits and room-temperature electronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SEOM and its application in a cryogenic-to-room-temperature link.
Fig. 2: Low-drive-voltage operation of SEOM.
Fig. 3: SEOM bandwidth: modelling and experimental characterization.
Fig. 4: Photonic link from an RSFQ circuit to room temperature.
Fig. 5: Projected SEOM transduction efficiency.

Similar content being viewed by others

Data availability

The data that support the findings of this study are included in this Article. Source data are provided with this paper.

Code availability

All relevant computer codes supporting this study are available from the corresponding author upon reasonable request.

References

  1. Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum information: an outlook. Science 339, 1169–1174 (2013).

    Article  ADS  Google Scholar 

  2. Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    Article  ADS  Google Scholar 

  3. Holmes, D. S., Ripple, A. L. & Manheimer, M. A. Energy-efficient superconducting computing—power budgets and requirements. IEEE Trans. Appl. Supercond. 23, 1701610 (2013).

    Article  ADS  Google Scholar 

  4. Braginski, A. I. Superconductor electronics: status and outlook. J. Supercond. Nov. Magn. 32, 23–44 (2019).

    Article  Google Scholar 

  5. Das, R. N. et al. Large scale cryogenic integration approach for superconducting high-performance computing. In 2017 IEEE 67th Electronic Components and Technology Conference (ECTC) 675–683 (IEEE, 2017).

  6. Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).

    Article  ADS  Google Scholar 

  7. Krinner, S. et al. Engineering cryogenic setups for 100-qubit scale superconducting circuit systems. EPJ Quantum Technol. 6, 2 (2019).

    Article  Google Scholar 

  8. Lecocq, F. et al. Control and readout of a superconducting qubit using a photonic link. Nature 591, 575–579 (2021).

    Article  ADS  Google Scholar 

  9. Youssefi, A. et al. A cryogenic electro-optic interconnect for superconducting devices. Nat. Electron. 4, 326–332 (2021).

    Article  Google Scholar 

  10. de Cea, M. et al. Photonic readout of superconducting nanowire single photon counting detectors. Sci. Rep. 10, 9470 (2020).

    Article  ADS  Google Scholar 

  11. Han, X., Fu, W., Zou, C.-L., Jiang, L. & Tang, H. X. Microwave-optical quantum frequency conversion. Optica 8, 1050–1064 (2021).

    Article  ADS  Google Scholar 

  12. Miller, D. A. B. Attojoule optoelectronics for low-energy information processing and communications. J. Light. Technol. 35, 346–396 (2017).

    Article  ADS  Google Scholar 

  13. Kachris, C. & Tomkos, I. A survey on optical interconnects for data centers. IEEE Commun. Surveys Tuts 14, 1021–1036 (2012).

    Article  Google Scholar 

  14. Winzer, P. J., Neilson, D. T. & Chraplyvy, A. R. Fiber-optic transmission and networking: the previous 20 and the next 20 years [invited]. Opt. Express 26, 24190–24239 (2018).

    Article  ADS  Google Scholar 

  15. Mukhanov, O. A. et al. Superconductor digital-RF receiver systems. IEICE Trans. Electron. E91-C, 306–317 (2008).

    Article  ADS  Google Scholar 

  16. Mukhanov, O. A. Energy-efficient single flux quantum technology. IEEE Trans. Appl. Supercond. 21, 760–769 (2011).

    Article  ADS  Google Scholar 

  17. McDermott, R. et al. Quantum-classical interface based on single flux quantum digital logic. Quantum Sci. Technol. 3, 024004 (2018).

    Article  ADS  Google Scholar 

  18. Likharev, K. & Semenov, V. RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems. IEEE Trans. Appl. Supercond 1, 3–28 (1991).

    Article  ADS  Google Scholar 

  19. Gupta, D. et al. Digital output data links from superconductor integrated circuits. IEEE Trans. Appl. Supercond. 29, 1–8 (2019).

    Google Scholar 

  20. Fu, W., Wu, H. & Feng, M. Superconducting processor modulated VCSELs for 4K high-speed optical data link. IEEE J. Quantum Electron. 58, 1–8 (2022).

    Article  Google Scholar 

  21. Lambert, N. J., Rueda, A., Sedlmeir, F. & Schwefel, H. G. L. Coherent conversion between microwave and optical photons—an overview of physical implementations. Adv. Quantum Technol. 3, 1900077 (2020).

    Article  Google Scholar 

  22. Delaney, R. D. et al. Superconducting-qubit readout via low-backaction electro-optic transduction. Nature 606, 489–493 (2022).

    Article  ADS  Google Scholar 

  23. Usami, K. & Nakamura, Y. A photonic link for quantum circuits. Nat. Electron. 4, 323–324 (2021).

    Article  Google Scholar 

  24. Gehl, M. et al. Operation of high-speed silicon photonic micro-disk modulators at cryogenic temperatures. Optica 4, 374–382 (2017).

    Article  ADS  Google Scholar 

  25. Eltes, F. et al. An integrated optical modulator operating at cryogenic temperatures. Nat. Mater. 19, 1164–1168 (2020).

    Article  ADS  Google Scholar 

  26. Chakraborty, U. et al. Cryogenic operation of silicon photonic modulators based on the d.c. Kerr effect. Optica 7, 1385–1390 (2020).

    Article  ADS  Google Scholar 

  27. Lee, B. S. et al. High-performance integrated graphene electro-optic modulator at cryogenic temperature. Nanophotonics 10, 99–104 (2020).

    Article  ADS  Google Scholar 

  28. Yin, B. et al. Electronic-photonic cryogenic egress link. In ESSCIRC 2021—IEEE 47th European Solid State Circuits Conference (ESSCIRC) 51–54 (IEEE, 2021).

  29. Pintus, P. et al. An integrated magneto-optic modulator for cryogenic applications. Nat. Electron. 5, 604–610 (2022).

    Article  Google Scholar 

  30. Pintus, P. et al. Ultralow voltage, high-speed, and energy-efficient cryogenic electro-optic modulator. Optica 9, 1176–1182 (2022).

    Article  ADS  Google Scholar 

  31. Xiong, C., Pernice, W. H. P. & Tang, H. X. Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing. Nano Lett. 12, 3562–3568 (2012).

    Article  ADS  Google Scholar 

  32. Wooten, E. L. et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J. Sel. Topics Quantum Electron 6, 69–82 (2000).

    Article  ADS  Google Scholar 

  33. Herzog, C., Poberaj, G. & Günter, P. Electro-optic behavior of lithium niobate at cryogenic temperatures. Opt. Commun. 281, 793–796 (2008).

  34. Lomonte, E. et al. Single-photon detection and cryogenic reconfigurability in lithium niobate nanophotonic circuits. Nat. Commun. 12, 6847 (2021).

    Article  ADS  Google Scholar 

  35. Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).

    Article  ADS  Google Scholar 

  36. Zhang, M., Wang, C., Kharel, P., Zhu, D. & Lončar, M. Integrated lithium niobate electro-optic modulators: when performance meets scalability. Optica 8, 652–667 (2021).

  37. Yoshida, K., Kanda, Y. & Kohjiro, S. A traveling-wave-type LiNbO/sub 3/ optical modulator with superconducting electrodes. IEEE Trans. Microw. Theory Techn. 47, 1201–1205 (1999).

    Article  ADS  Google Scholar 

  38. Thiele, F. et al. Cryogenic electro-optic modulation in titanium in-diffused lithium niobate waveguides. J. Phys. Photonics 4, 034004 (2022).

    Article  ADS  Google Scholar 

  39. Baker, J. W., Lejeune, J. D. & Naugle, D. G. Effects of a nonuniform current distribution on the kinetic inductance of a thin superconducting film. J. Appl. Phys. 45, 5043–5049 (1974).

    Article  ADS  Google Scholar 

  40. Tinkham, M. Introduction to Superconductivity (Courier Corporation, 2004).

  41. Tolpygo, S. et al. Advanced fabrication processes for superconducting very large scale integrated circuits. In IEEE Trans. Appl. Supercond. 26, 1100110 (2016).

  42. Freude, W. et al. Quality metrics for optical signals: eye diagram, Q-factor, OSNR, EVM and BER. In 2012 14th International Conference on Transparent Optical Networks (ICTON) 1–4 (IEEE, 2012).

  43. Agrell, E. & Secondini, M. Information-theoretic tools for optical communications engineers. In 2018 IEEE Photonics Conference 1–5 (IEEE, 2018).

  44. Chang, D. et al. LDPC convolutional codes using layered decoding algorithm for high speed coherent optical transmission. In Optical Fiber Communication (OFC) Conference 1–3 (IEEE, 2012).

  45. Zhang, M., Wang, C., Cheng, R., Shams-Ansari, A. & Lončar, M. Monolithic ultra-high-Q lithium niobate microring resonator. Optica 4, 1536–1537 (2017).

Download references

Acknowledgements

This project was funded by IARPA’s SuperCables program through the ARO grant W911-NF-19-2-0115, and DOE Office of Science, National Quantum Information Science Research Centers, Co-design Center for Quantum Advantage (C2QA), contract no. DE-SC0012704. We thank the Office of Naval Research for providing funding support in the construction of the RF interface through grant N00014-20-1-2134. Y.Z. acknowledges support from the Yale Quantum Institute. We extend our gratitude to B. Liu for his assistance with the RSFQ circuit module installation and operation. We would also like to acknowledge HYPRES for their contributions to the RSFQ circuit design and for granting permission to use the micrograph of the RSFQ circuit chip in this Article. Special thanks go to D. Kirichenko and D. Gupta for their insightful discussions. We are grateful to M. Gehl, B. Palmer, S. Nam, D. V. Vecheten, W. Mayer and W. Harrod for providing valuable technical and administrative support throughout this project. Finally, we thank Y. Sun, S. Rinehart, L. McCabe, K. Woods and M. Rooks for assistance in the device fabrication.

Author information

Authors and Affiliations

Authors

Contributions

H.X.T. and M.S. conceived the idea and experiment. M.S. fabricated the device and performed the experiment. J.X. and Y.X. helped with the fabrication and experiments. S.W., R.C., W.F. and Y.Z. helped with the device packaging and instrumentation. M.S. wrote the manuscript, and all authors contributed to the manuscript. H.X.T. supervised the work.

Corresponding author

Correspondence to Hong X. Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Paolo Pintus and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14 and Sections I–X.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, M., Xie, J., Xu, Y. et al. Photonic link from single-flux-quantum circuits to room temperature. Nat. Photon. 18, 371–378 (2024). https://doi.org/10.1038/s41566-023-01370-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01370-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing