Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An electronic silicon-based memristor with a high switching uniformity

Abstract

Metal–insulator–metal devices known as memristors offer voltage-regulated nanoscale conductivity and are of interest in the development of non-volatile random access memory. Typically, however, their tunable conductivity is the result of migrating ions within a stochastically formed filament, and as such their combined resistor–memory performance suffers. Here we show that amorphous silicon compositions, which are doped with oxygen or nitrogen and sandwiched between metal electrodes, can be used to create purely electronic memristors. The devices have coherent electron wave functions that extend to the full device thickness (more than 15 nm) and, despite the thinness and very high aspect ratio of the devices, electrons still follow an isotropic, three-dimensional pathway, thus providing uniform conductivity at the nanoscale. Such pathways in amorphous insulators are derived from overlapping gap states and regulated by trapped charge, which is stabilized by electron–lattice interaction. As a result, the nanometallic memristors also exhibit pressure-triggered insulator-to-metal transitions. Our silicon-based memristors, which could be readily integrated into silicon technology, are purely electronic and offer switching capabilities that are fast, uniform, durable, multi-state and low power.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Silicon memristor as a non-filamentary distinctively electronic two-terminal device.
Fig. 2: Constant-voltage switching of a silicon memristor.
Fig. 3: Size-dependent localization transitions in amorphous SiOx nanofilms.
Fig. 4: Thickness-dependent saturation of QCC.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Chua, L. O. Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971).

    Article  Google Scholar 

  2. 2.

    Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).

    Article  Google Scholar 

  3. 3.

    Kim, K. M., Jeong, D. S. & Hwang, C. S. Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook. Nanotechnology 22, 254002 (2011).

    Article  Google Scholar 

  4. 4.

    Wong, H.-S. P. et al. Metal–oxide RRAM. Proc. IEEE 100, 1951–1970 (2012).

    Article  Google Scholar 

  5. 5.

    Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013).

    Article  Google Scholar 

  6. 6.

    Zidan, M. A., Strachan, J. P. & Lu, W. D. The future of electronics based on memristive systems. Nat. Electron. 1, 22–29 (2018).

    Article  Google Scholar 

  7. 7.

    Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007).

    Article  Google Scholar 

  8. 8.

    Waser, R., Dittmann, R., Staikov, G. & Szot, K. Redox-based resistive switching memories—nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009).

    Article  Google Scholar 

  9. 9.

    Yang, Y. & Lu, W. Nanoscale resistive switching devices: mechanisms and modeling. Nanoscale 5, 10076–10092 (2013).

    Article  Google Scholar 

  10. 10.

    Hwang, C. S. & Dieny, B. Advanced memory—materials for a new era of information technology. MRS Bull. 43, 330–333 (2018).

    Article  Google Scholar 

  11. 11.

    Mehonic, A. et al. Intrinsic resistance switching in amorphous silicon oxide for high performance SiOx ReRAM devices. Microelectron. Eng. 178, 98–103 (2017).

    Article  Google Scholar 

  12. 12.

    Mehonic, A. et al. Silicon oxide (SiOx): a promising material for resistance switching?. Adv. Mater. 30, 1801187 (2018).

    Article  Google Scholar 

  13. 13.

    Chen, A. B., Kim, S. G., Wang, Y., Tung, W. S. & Chen, I. W. A size-dependent nanoscale metal–insulator transition in random materials. Nat. Nanotechnol. 6, 237–241 (2011).

    Article  Google Scholar 

  14. 14.

    Choi, B. J., Chen, A. B., Yang, X. & Chen, I. W. Purely electronic switching with high uniformity, resistance tunability, and good retention in Pt‐dispersed SiO2 thin films for ReRAM. Adv. Mater. 23, 3847–3852 (2011).

    Google Scholar 

  15. 15.

    Yang, X., Tudosa, I., Choi, B. J., Chen, A. B. & Chen, I. W. Resolving voltage–time dilemma using an atomic-scale lever of subpicosecond electron–phonon interaction. Nano Lett. 14, 5058–5067 (2014).

    Article  Google Scholar 

  16. 16.

    Lu, Y., Yoon, J. H., Dong, Y. & Chen, I. W. Purely electronic nanometallic resistance switching random-access memory. MRS Bull. 43, 358–364 (2018).

    Article  Google Scholar 

  17. 17.

    Sheng, P. Introduction to Wave Scattering, Localization and Mesoscopic Phenomena Vol. 88, 5 (Springer, 2006).

  18. 18.

    Lu, Y. & Chen, I. W. Conducting electrons in amorphous Si nanostructures: coherent interference and metal–insulator transitions mediated by local structures. Preprint at https://arxiv.org/abs/1703.02203 (2017).

  19. 19.

    Lu, Y. Quantum Electronic Interference in Nano Amorphous Silicon and Other Thin Film Resistance Memory. PhD thesis, Univ. Pennsylvania (2017); https://repository.upenn.edu/edissertations/3020

  20. 20.

    Yang, J. J. et al. Memristive switching mechanism for metal/oxide/metal nanodevices.Nat. Nanotechnol. 3, 429–433 (2008).

    Article  Google Scholar 

  21. 21.

    Lu, Y., Lee, J. H., Yang, X. & Chen, I. W. Distinguishing uniform switching from filamentary switching in resistance memory using a fracture test. Nanoscale 8, 18113–18120 (2016).

    Article  Google Scholar 

  22. 22.

    Chen, A. B., Choi, B. J., Yang, X. & Chen, I. W. A parallel circuit model for multi-state resistive-switching random access memory. Adv. Funct. Mater. 22, 546–554 (2012).

    Article  Google Scholar 

  23. 23.

    Yang, X. & Chen, I. W. Dynamic-load-enabled ultra-low power multiple-state RRAM devices. Sci. Rep. 2, 744 (2012).

    Article  Google Scholar 

  24. 24.

    Lu, Y., Lee, J. H. & Chen, I. W. Scalability of voltage-controlled filamentary and nanometallic resistance memory devices. Nanoscale 9, 12690–12697 (2017).

    Article  Google Scholar 

  25. 25.

    Lu, Y., Lee, J. H. & Chen, I. W. Nanofilament dynamics in resistance memory: model and validation. ACS Nano 9, 7649–7660 (2015).

    Article  Google Scholar 

  26. 26.

    Yoon, J. H. et al. Highly improved uniformity in the resistive switching parameters of TiO2 thin films by inserting Ru nanodots. Adv. Mater. 25, 1987–1992 (2013).

    Article  Google Scholar 

  27. 27.

    Zhuo, V. Y. Q. et al. Improved switching uniformity and low-voltage operation in TaOx-based RRAM using Ge reactive layer. IEEE Electron Device Lett. 34, 1130–1132 (2013).

    Article  Google Scholar 

  28. 28.

    Fang, Z. et al. HfOx/TiOx/HfOx/TiOx multilayer-based forming-free RRAM devices with excellent uniformity. IEEE Electron Device Lett. 32, 566–568 (2011).

    Article  Google Scholar 

  29. 29.

    Yu, S. et al. A low energy oxide-based electronic synaptic device for neuromorphic visual systems with tolerance to device variation. Adv. Mater. 25, 1774–1779 (2013).

    Article  Google Scholar 

  30. 30.

    Ching, W. Y. Theory of amorphous SiO2 and SiOx. I. Atomic structural models. Phys. Rev. B 26, 6610 (1982).

    Article  Google Scholar 

  31. 31.

    Ching, W. Y. Theory of amorphous SiO2 and SiOx. III. Electronic structures of SiOx. Phys. Rev. B 26, 6633 (1982).

    Article  Google Scholar 

  32. 32.

    Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492 (1958).

    Article  Google Scholar 

  33. 33.

    Lee, P. A. & Ramakrishnan, T. V. Disordered electronic systems. Rev. Mod. Phys. 57, 287–337 (1985).

    Article  Google Scholar 

  34. 34.

    Altshuler, B. L. and Aronov, A. G. in Electron–Electron Interaction in Disordered Systems Vol. 10 (eds Efros, A. L. & Pollak, M.) 1–154 (Elsevier, 2012).

  35. 35.

    Pierre, F. et al. Dephasing of electrons in mesoscopic metal wires. Phys. Rev. B 68, 085413 (2003).

    Article  Google Scholar 

  36. 36.

    Kwong, Y. K., Lin, K., Isaacson, M. S. & Parpia, J. M. An attempt to observe phonon dimensionality crossover effects in the inelastic scattering rate of thin free-standing aluminum films. J. Low Temp. Phys. 88, 261–272 (1992).

    Article  Google Scholar 

  37. 37.

    Golubev, D. S. & Zaikin, A. D. Quantum decoherence in disordered mesoscopic systems. Phys. Rev. Lett. 81, 1074 (1998).

    Article  Google Scholar 

  38. 38.

    Roukes, M. L., Freeman, M. R., Germain, R. S., Richardson, R. C. & Ketchen, M. B. Hot electrons and energy transport in metals at millikelvin temperatures. Phys. Rev. Lett. 55, 422 (1985).

    Article  Google Scholar 

  39. 39.

    Peters, R. P. & Bergmann, G. Dependence of the phase-coherence time in weak localization on electronic mean free path and film thickness. J. Phys. Soc. Jpn. 54, 3478–3487 (1985).

    Article  Google Scholar 

  40. 40.

    van Hapert, J. J. Hopping Conduction and Chemical Structure, a Study on Silicon Suboxides. PhD thesis, Utrecht Univ. (2002).

  41. 41.

    Lu, Y. & Chen, I. W. Probing material conductivity in two-terminal devices by resistance difference. Appl. Phys. Lett. 111, 083501 (2017).

    Article  Google Scholar 

  42. 42.

    Mott, N. Electrons in glass. Rev. Mod. Phys. 50, 203 (1978).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the US National Science Foundation Grant No. DMR-1409114 and used the facilities at NHMFL (DMR-1157490, State of Florida) and at FACET (SLAC National Laboratory supported by the US Department of Energy), where the experimental assistance of Drs J.-H. Park (NHMFL), H.-W. Baek (NHMFL) and I. Tudosa (FACET) is gratefully acknowledged.

Author information

Affiliations

Authors

Contributions

Y.L. and I.-W.C. conceived the idea and formulated the research plan. All experiments except Fourier transform infrared spectroscopy (performed and analysed by A.A.) and transmission electron microscopy (provided and analysed by C.-H.K., J.-S.B. and S.-Y.C.) were performed and analysed by Y.L. The manuscript was written by Y.L. and I.-W.C. with comments from all coauthors.

Corresponding author

Correspondence to I-Wei Chen.

Ethics declarations

Competing interest

Y.L., I.-W.C. and University of Pennsylvania have filed for applications on silicon-based and related thin-film memory devices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–14 and Supplementary Table 1

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Alvarez, A., Kao, CH. et al. An electronic silicon-based memristor with a high switching uniformity. Nat Electron 2, 66–74 (2019). https://doi.org/10.1038/s41928-019-0204-7

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing