Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants


Piezoelectric microsystems are of use in areas such as mechanical sensing, energy conversion and robotics. The systems typically have a planar structure, but transforming them into complex three-dimensional (3D) frameworks could enhance and extend their various modes of operation. Here, we report a controlled, nonlinear buckling process to convert lithographically defined two-dimensional patterns of electrodes and thin films of piezoelectric polymers into sophisticated 3D piezoelectric microsystems. To illustrate the engineering versatility of the approach, we create more than twenty different 3D geometries. With these structures, we then demonstrate applications in energy harvesting with tailored mechanical properties and root-mean-square voltages ranging from 2 mV to 790 mV, in multifunctional sensors for robotic prosthetic interfaces with improved responsivity (for example, anisotropic responses and sensitivity of 60 mV N−1 for normal force), and in bio-integrated devices with in vivo operational capabilities. The 3D geometries, especially those with ultralow stiffnesses or asymmetric layouts, yield unique mechanical attributes and levels of functionality that would be difficult or impossible to achieve with conventional two-dimensional designs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: 3D mesoscale piezoelectric frameworks and ultralow-stiffness mesostructures.
Fig. 2: 3D vibratory piezoelectric energy harvesters.
Fig. 3: Impact-based 3D piezoelectric energy harvester and sensors.
Fig. 4: 3D piezoelectric devices as biomedical implants.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Kim, D. H. et al. Epidermal electronics. Science 333, 838–843 (2011).

    Article  Google Scholar 

  2. 2.

    Larson, C. et al. Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 351, 1071–1074 (2016).

    Article  Google Scholar 

  3. 3.

    Tian, B. et al. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 11, 986–994 (2012).

    Article  Google Scholar 

  4. 4.

    Hwang, G. T. et al. Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester. Adv. Mater. 26, 4880–4887 (2014).

    Article  Google Scholar 

  5. 5.

    Fan, F. R., Tian, Z. Q. & Lin Wang, Z. Flexible triboelectric generator. Nano Energy 1, 328–334 (2012).

    Article  Google Scholar 

  6. 6.

    Yin, J. et al. Generating electricity by moving a droplet of ionic liquid along graphene. Nat. Nanotech. 9, 378–383 (2014).

    Article  Google Scholar 

  7. 7.

    Jinno, H. et al. Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications. Nat. Energy 2, 780–785 (2017).

    Article  Google Scholar 

  8. 8.

    Zhao, J. et al. Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes. Nat. Nanotech. 12, 993–999 (2017).

    Article  Google Scholar 

  9. 9.

    Li, M., Tang, H. X. & Roukes, M. L. Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nat. Nanotech. 2, 114–120 (2007).

    Article  Google Scholar 

  10. 10.

    Kan, T. et al. Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals. Nat. Commun. 6, 8422 (2015).

    Article  Google Scholar 

  11. 11.

    Nguyen, T. D. et al. Piezoelectric nanoribbons for monitoring cellular deformations. Nat. Nanotech. 7, 587–593 (2012).

    Article  Google Scholar 

  12. 12.

    Wu, W., Wen, X. & Wang, Z. L. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 340, 952–957 (2013).

    Article  Google Scholar 

  13. 13.

    Yu, X. et al. Needle-shaped ultrathin piezoelectric microsystem for guided tissue targeting via mechanical sensing. Nat. Biomed. Eng. 2, 162–172 (2018).

    Google Scholar 

  14. 14.

    Yang, J. M. et al. Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo. Nat. Med. 18, 1297–1302 (2012).

    Article  Google Scholar 

  15. 15.

    Hu, H. et al. Stretchable ultrasonic transducer arrays for three-dimensional imaging on complex surfaces. Sci. Adv. 4, eaar3979 (2018).

    Article  Google Scholar 

  16. 16.

    Wang, X., Song, J., Liu, J. & Zhong, L. W. Direct-current nanogenerator driven by ultrasonic waves. Science 316, 102–105 (2007).

    Article  Google Scholar 

  17. 17.

    Dagdeviren, C. et al. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc. Natl Acad. Sci. USA 111, 1927–1932 (2014).

    Article  Google Scholar 

  18. 18.

    Baek, S. H. et al. Giant piezoelectricity on Si for hyperactive MEMS. Science 334, 958–961 (2011).

    Article  Google Scholar 

  19. 19.

    Ma, K. Y., Chirarattananon, P., Fuller, S. B. & Wood, R. J. Controlled flight of a biologically inspired, insect-scale robot. Science 340, 603–607 (2013).

    Article  Google Scholar 

  20. 20.

    You, Y. M. et al. An organic-inorganic perovskite ferroelectric with large piezoelectric response. Science 357, 306–309 (2017).

    Article  Google Scholar 

  21. 21.

    Curry, E. J. et al. Biodegradable piezoelectric force sensor. Proc. Natl Acad. Sci. USA 115, 909–914 (2018).

    Article  Google Scholar 

  22. 22.

    Wu, W. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514, 470–474 (2014).

    Article  Google Scholar 

  23. 23.

    Zhu, H. et al. Observation of piezoelectricity in free-standing monolayer MoS2. Nat. Nanotech. 10, 151–155 (2015).

    Article  Google Scholar 

  24. 24.

    Lee, B. Y. et al. Virus-based piezoelectric energy generation. Nat. Nanotech. 7, 351–356 (2012).

    Article  Google Scholar 

  25. 25.

    Chen, X., Mahadevan, L., Driks, A. & Sahin, O. Bacillus spores as building blocks for stimuli-responsive materials and nanogenerators. Nat. Nanotech. 9, 137–141 (2014).

    Article  Google Scholar 

  26. 26.

    Li, M. et al. Revisiting the δ-phase of poly(vinylidene fluoride) for solution-processed ferroelectric thin films. Nat. Mater. 12, 433–438 (2013).

    Article  Google Scholar 

  27. 27.

    Li, F. et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nat. Mater. 17, 349–354 (2018).

    Article  Google Scholar 

  28. 28.

    Yan, Y., Zhou, J. E., Maurya, D., Wang, Y. U. & Priya, S. Giant piezoelectric voltage coefficient in grain-oriented modified PbTiO3 material. Nat. Commun. 7, 13089 (2016).

    Article  Google Scholar 

  29. 29.

    Qin, Y., Wang, X. & Wang, Z. L. Microfibre-nanowire hybrid structure for energy scavenging. Nature 451, 809–813 (2008).

    Article  Google Scholar 

  30. 30.

    Qi, Y. et al. Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano. Lett. 11, 1331–1336 (2011).

    Article  Google Scholar 

  31. 31.

    Han, M. et al. r-shaped hybrid nanogenerator with enhanced piezoelectricity. ACS Nano 7, 8554–8560 (2013).

    Article  Google Scholar 

  32. 32.

    Saadon, S. & Sidek, O. A review of vibration-based MEMS piezoelectric energy harvesters. Energy Convers. Manag. 52, 500–504 (2011).

    Article  Google Scholar 

  33. 33.

    Meza, L. R., Das, S. & Greer, J. R. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345, 1322–1326 (2014).

    Article  Google Scholar 

  34. 34.

    Cavallo, F. & Lagally, M. G. Nano-origami: Art and function. Nano Today 10, 538–541 (2015).

    Article  Google Scholar 

  35. 35.

    Sydney Gladman, A., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L. & Lewis, J. A. Biomimetic 4D printing. Nat. Mater. 15, 413–418 (2016).

    Article  Google Scholar 

  36. 36.

    Xu, S. et al. Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science 347, 154–159 (2015).

    Article  Google Scholar 

  37. 37.

    Yan, Z. et al. Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials. Sci. Adv. 2, e1601014 (2016).

    Article  Google Scholar 

  38. 38.

    Yan, Z. et al. Deterministic assembly of 3D mesostructures in advanced materials via compressive buckling: A short review of recent progress. Extrem. Mech. Lett. 11, 96–104 (2017).

    Article  Google Scholar 

  39. 39.

    Fu, H. et al. Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics. Nat. Mater. 17, 268–276 (2018).

    Article  Google Scholar 

  40. 40.

    Lee, W. et al. Two-dimensional materials in functional three-dimensional architectures with applications in photodetection and imaging. Nat. Commun. 9, 1417 (2018).

    Article  Google Scholar 

  41. 41.

    Zhang, Y. et al. Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nat. Rev. Mater. 2, 17019 (2017).

    Article  Google Scholar 

  42. 42.

    Wang, S. et al. Mechanics of curvilinear electronics. Soft Matter 6, 5757–5763 (2010).

    Article  Google Scholar 

  43. 43.

    Persson, B. N. J., Albohr, O., Tartaglino, U., Volokitin, A. I. & Tosatti, E. On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J. Phys. Condens. Matter 17, 1–62 (2005).

    Article  Google Scholar 

  44. 44.

    Yin, S. et al. Measuring single cardiac myocyte contractile force via moving a magnetic bead. Biophys. J. 88, 1489–1495 (2005).

    Article  Google Scholar 

  45. 45.

    Raman, R. et al. Optogenetic skeletal muscle-powered adaptive biological machines. Proc. Natl Acad. Sci. USA 113, 3497–3502 (2016).

    Article  Google Scholar 

  46. 46.

    Ning, X. et al. 3D tunable, multiscale, and multistable vibrational micro-platforms assembled by compressive buckling. Adv. Funct. Mater. 27, 1605914 (2017).

    Article  Google Scholar 

  47. 47.

    Kulah, H. & Najafi, K. Energy scavenging from low-frequency vibrations by using frequency up-conversion for wireless sensor applications. IEEE Sens. J. 8, 261–268 (2008).

    Article  Google Scholar 

  48. 48.

    Zi, Y. et al. Harvesting low-frequency ( < 5 Hz) irregular mechanical energy: A possible killer application of triboelectric nanogenerator. ACS Nano 10, 4797–4805 (2016).

    Article  Google Scholar 

  49. 49.

    Humood, M. et al. Fabrication and deformation of 3D multilayered kirigami microstructures. Small 14, 1703852 (2018).

    Article  Google Scholar 

  50. 50.

    Ranzani, T., Gerboni, G., Cianchetti, M. & Menciassi, A. A bioinspired soft manipulator for minimally invasive surgery. Bioinspir. Biomim. 10, 035008 (2015).

    Article  Google Scholar 

Download references


J.A.R. acknowledges support from the US Department of Energy, Office of Science, Basic Energy Sciences (DE-FG02-07ER46471). Y.Z. acknowledges support from the National Natural Science Foundation of China (11722217) and the Tsinghua National Laboratory for Information Science and Technology. Y.H. acknowledges support from the NSF (CMMI1400169, CMMI1534120 and CMMI1635443). Y.X. acknowledges support from the Ryan Fellowship and the Northwestern University International Institute for Nanotechnology.

Author information




M.H., H.W., Z.Y., Y.Z., Y.H. and J.A.R. conceived the idea and designed the research. M.H., Y.Y., C.L., Z.Y. and J.L. performed micro-fabrication of all structures and devices. M.H., C.L., W.B. and H.Z. performed measurements and analysed the experimental data. M.H., W.B. and I.K. evaluated the devices in animal models. X.W. and B.A. performed cell seeding and cell viability assay under the supervision of G.A.A. H.W., Y.Z. and Y.H. led the mechanical modelling and theoretical studies, with assistance from H. Li. Y.X. and H. Luan. M.H., H.W., Y.Z., Y.H. and J.A.R. wrote the manuscript.

Corresponding authors

Correspondence to Yihui Zhang, Yonggang Huang or John A. Rogers.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–4 and Supplementary Figures 1–46

Reporting Summary

Supplementary Video 1

Output signals from the 2D piezoelectric device with a mouse moving freely inside the enclosure.

Supplementary Video 2

Output signals from the 3D piezoelectric device with a mouse moving freely inside the enclosure.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Han, M., Wang, H., Yang, Y. et al. Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants. Nat Electron 2, 26–35 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing