Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electric-field control of interfacial spin–orbit fields

Abstract

Current-induced spin–orbit magnetic fields, which arise in single-crystalline ferromagnets with broken inversion symmetry and in non-magnetic metal/ferromagnetic metal bilayers, produce spin–orbit torques that can be used to manipulate the magnetization of a ferromagnet. In single-crystalline Fe/GaAs (001) heterostructures, for example, interfacial spin–orbit magnetic fields emerge at the Fe/GaAs interface due to the lack of inversion symmetry. To develop low-power spin–orbit torque devices, it is important to have electric-field control over such spin–orbit magnetic fields. Here, we show that the current-induced spin–orbit magnetic fields at the Fe/GaAs (001) interface can be controlled with an electric field. In particular, by applying a gate voltage across the Fe/GaAs interface, the interfacial spin–orbit field vector acting on Fe can be robustly modulated via a change in the magnitude of the interfacial spin–orbit interaction. Our results illustrate that the electric field in a Schottky barrier is capable of modifying spin–orbit magnetic fields, an effect that could be used to develop spin–orbit torque devices with low power consumption.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Electric-field modulation of spin–orbit fields at the Fe/GaAs (001) interface.
Fig. 2: Electric-field modulation of induced spin–orbit fields measured by spin–orbit FMR.
Fig. 3: Gate-voltage dependence of in-plane induced spin–orbit fields.
Fig. 4: Tuning of in-plane induced spin–orbit fields.
Fig. 5: Gate voltage dependence of the out-of-plane induced spin–orbit fields.

References

  1. 1.

    Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Article  Google Scholar 

  2. 2.

    Liu, L. Q. et al. Spin–torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article  Google Scholar 

  3. 3.

    Kim, J. et al. Layer thickness dependence of the current-induced effective field vector in Ta|CoFeB|MgO. Nat. Mater. 12, 240–245 (2013).

    Article  Google Scholar 

  4. 4.

    Garello, K. et al. Symmetry and magnitude of spin–orbit torques in ferromagnetic heterostructures. Nat. Nanotech. 8, 587–593 (2013).

    Article  Google Scholar 

  5. 5.

    Soumyanarayanan, A., Reyren, N., Fert, A. & Panagopoulos, C. Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces. Nature 539, 509–517 (2016).

    Article  Google Scholar 

  6. 6.

    Mellnik, A. R. et al. Spin-transfer torque generated by a topological insulator. Nature 511, 449–451 (2014).

    Article  Google Scholar 

  7. 7.

    Fan, Y. B. et al. Magnetization switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure. Nat. Mater. 13, 699–704 (2014).

    Article  Google Scholar 

  8. 8.

    Kondou, K. et al. Fermi-level-dependent charge-to-spin current conversion by Dirac surface states of topological insulators. Nat. Phys. 12, 1027–1031 (2016).

    Article  Google Scholar 

  9. 9.

    Lesne, E. et al. Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces. Nat. Mater. 15, 1261–1266 (2016).

    Article  Google Scholar 

  10. 10.

    Rojas-Sánchez, J.-C. et al. Spin to charge conversion at room temperature by spin pumping into a new type of topological insulator: α-Sn films. Phys. Rev. Lett. 116, 096602 (2016).

    Article  Google Scholar 

  11. 11.

    Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000).

    Article  Google Scholar 

  12. 12.

    Matsukura, F., Tokura, Y. & Ohno, H. Control of magnetism by electric fields. Nat. Nanotech. 10, 209–220 (2015).

    Article  Google Scholar 

  13. 13.

    Fan, Y. B. et al. Electric-field control of spin–orbit torque in a magnetically doped topological insulator. Nat. Nanotech. 11, 352–359 (2016).

    Article  Google Scholar 

  14. 14.

    Liu, R. H., Lim, W. L. & Urazhdin, S. Control of current-induced spin–orbit effects in a ferromagnetic heterostructures by electric field. Phys. Rev. B. 89, 220409(R) (2014).

    Article  Google Scholar 

  15. 15.

    Weisheit, M. et al. Electric field-induced modification of magnetism in thin-film ferromagnets. Science 315, 349–351 (2007).

    Article  Google Scholar 

  16. 16.

    Chernyshov, A. et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field. Nat. Phys. 5, 656–659 (2009).

    Article  Google Scholar 

  17. 17.

    Endo, M., Matsukura, F. & Ohno, H. Current induced effective magnetic field and magnetization reversal in uniaxial anisotropy (Ga,Mn)As. Appl. Phys. Lett. 97, 222501 (2010).

    Article  Google Scholar 

  18. 18.

    Fang, D. et al. Spin–orbit-driven ferromagnetic resonance. Nat. Nanotech. 6, 413–417 (2011).

    Article  Google Scholar 

  19. 19.

    Kurebayashi, H. et al. An antidamping spin–orbit torque originating from the Berry curvature. Nat. Nanotech. 9, 211–217 (2014).

    Article  Google Scholar 

  20. 20.

    Ciccarelli, C. et al. Room-temperature spin–orbit torque in NiMnSb. Nat. Phys. 12, 855–860 (2016).

    Article  Google Scholar 

  21. 21.

    Chen, L. et al. Robust spin–orbit torque and spin–galvanic effect at the Fe/GaAs (001) interface at room temperature. Nat. Commun. 7, 13802 (2016).

    Article  Google Scholar 

  22. 22.

    Gmitra, M., Matos-Abiague, A., Draxl, C. & Fabian, J. Magnetic control of spin-orbit fields: a first-principle study of Fe/GaAs junctions. Phys. Rev. Lett. 111, 036603 (2013).

    Article  Google Scholar 

  23. 23.

    Fabian, J., Matos-Abiague, A., Ertler, C., Stano, P. & Žutić, I. Semiconductor spintronics. Acta. Phys. Slov. 57, 565–907 (2007).

    Google Scholar 

  24. 24.

    Nitta, J., Akazaki, T., Takayanagi, H. & Enoki, T. Gate control of spin–orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure. Phys. Rev. Lett. 78, 1335–1338 (1997).

    Article  Google Scholar 

  25. 25.

    Sze, S. M. Semiconductor Devices 2nd edn (Wiley, New York, 2002).

  26. 26.

    Liu, C. Electrical detection of ferromagnetic resonance in ferromagnetic/n-GaAs heterostructures by tunneling anisotropic magnetoresistance. Appl. Phys. Lett. 105, 212401 (2014).

    Article  Google Scholar 

  27. 27.

    Liu, C. et al. Dynamic detection of electron spin accumulation in ferromagnet–semiconductor devices by ferromagnetic resonance. Nat. Commun. 7, 10296 (2016).

    Article  Google Scholar 

  28. 28.

    Jonker, B. T., Glembocki, O. J., Holm, R. T. & Wagner, R. J. Enhanced carrier lifetimes and suppression of midgap states in GaAs at a magnetic metal interface. Phys. Rev. Lett. 79, 4886–4889 (1997).

    Article  Google Scholar 

  29. 29.

    Qaiumzadeh, A., Duine, R. A. & Titov, M. Spin–orbit torques in two-dimensional Rashba ferromagnets. Phys. Rev. B 92, 014402 (2015).

    Article  Google Scholar 

  30. 30.

    Kato, Y. K., Myer, R. C., Gossard, A. C. & Awschalom, D. D. Current-induced spin polarization in strained semiconductors. Phys. Rev. Lett. 93, 176601 (2004).

    Article  Google Scholar 

  31. 31.

    Stern, N. P. et al. Current-induced polarization and the spin Hall effect at room temperature. Phys. Rev. Lett. 97, 126603 (2006).

    Article  Google Scholar 

  32. 32.

    Engel, H.-A., Rashba, E. I. & Halperin, B. I. Out-of-plane spin polarization from in-plane and magnetic fields. Phys. Rev. Lett. 98, 036602 (2007).

    Article  Google Scholar 

  33. 33.

    Ishihara, J., Ohno, Y. & Ohno, H. Direct imaging of gate-controlled persistent spin helix state in a modulation-doped GaAs/AlGaAs quantum well. Appl. Phys. Express 7, 013001 (2014).

    Article  Google Scholar 

  34. 34.

    Luengo-Kovac, M. et al. Gate control of the spin mobility through the modification of the spin–orbit interaction in two-dimensional system. Phys. Rev. B 95, 245315 (2017).

    Article  Google Scholar 

  35. 35.

    Dettwiler, F. et al. Stretchable persistent spin helices in GaAs quantum wells. Phys. Rev. X 7, 031010 (2017).

    Google Scholar 

  36. 36.

    Gambardella, P. & Miron, I. M. Current-induced spin–orbit torques. Philos. Trans. R. Soc. A 369, 3175–3197 (2011).

    Article  Google Scholar 

  37. 37.

    Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Mag. Mag. Mater. 159, L1–L7 (1996).

    Article  Google Scholar 

  38. 38.

    Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

L.C. thanks M. Kammermeier, M. Buchner and C. Gorini for fruitful discussions. L.C. acknowledges support from the Alexander von Humboldt Foundation. This work was supported by the German Science Foundation (DFG) via grants SFB 689 and SFB 1277.

Author information

Affiliations

Authors

Contributions

L.C. planned the study. L.C. and R.I. fabricated the devices. L.C. collected and analysed the data. M.K., D.S. and D.B. grew the samples. M.V. carried out the COMSOL simulations. M.G. and J.F. conducted first-principle calculations and provided theoretical input. L.C. wrote the manuscript with input from J.F., C.H.B. and D.W. All authors discussed the results.

Corresponding author

Correspondence to C. H. Back.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–4 and Supplementary Figures 1–7

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Gmitra, M., Vogel, M. et al. Electric-field control of interfacial spin–orbit fields. Nat Electron 1, 350–355 (2018). https://doi.org/10.1038/s41928-018-0085-1

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing