Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Closing the gap between climate regulation and food security with nano iron oxides

Abstract

Rice production poses one of the most important dilemmas between climate regulation and food security. While fertilization often results in a higher yield, it is also accompanied by more greenhouse gas (GHG) emissions. For this dilemma, the final consideration usually depends on the trade-offs to mitigate on-going climate change while supporting a continuously growing global population. Here we conducted a 4-year field experiment to evaluate the capacity of iron oxide nanoparticles (FeONPs) at 6.3 kg ha−1 yr−1 as the basal fertilizer to close the gap of such trade-offs. Compared with urea fertilization, FeONPs can mitigate climate change by reducing 50% of methane (CH4) and nitrous oxide (N2O) emissions while supporting significant soil carbon sequestration by 7.4% in the fourth year. Moreover, through reductions in ammonia volatilization and the entrapment of nitrogen in nanoparticles, FeONPs improve the retention of soil nitrogen nutrients, leading to an increase in food production of up to 25%. Our results show that FeONPs effects became more and more prominent throughout a continuous 4-year application. Together, our study revealed FeONPs as a next-generation fertilizer with great potential to solve the dilemma of meeting food security demand while complying with climate regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A conceptual framework showing that FeONPs fertilization can close the gap between climate regulation and food security trade-offs in rice ecosystems.
Fig. 2: FeONPs fertilization decreases GHG emissions by regulating the abundances of related microbial functional genes in the fourth year.
Fig. 3: FeONPs fertilization increases food production by retaining more N nutrient in paddy soils.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information.

References

  1. Xu, Z. et al. Impacts of irrigated agriculture on food–energy–water–CO2 nexus across metacoupled systems. Nat. Commun. 11, 5837 (2020).

    Article  CAS  Google Scholar 

  2. Terrer, C. et al. A trade-off between plant and soil carbon storage under elevated CO2. Nature 591, 599–603 (2021).

    Article  CAS  Google Scholar 

  3. FAOSTAT, Crops and livestock products, https://www.fao.org/faostat/en/#data/QCL (2022).

  4. Li, S. et al. Enhancing rice production sustainability and resilience via reactivating small water bodies for irrigation and drainage. Nat. Commun. 14, 3794 (2023).

    Article  CAS  Google Scholar 

  5. van Groenigen, K. J., van Kessel, C. & Hungate, B. A. Increased greenhouse-gas intensity of rice production under future atmospheric conditions. Nat. Clim. Change 3, 288–291 (2013).

    Article  Google Scholar 

  6. Harmsen, M. et al. Uncertainty in non-CO2 greenhouse gas mitigation contributes to ambiguity in global climate policy feasibility. Nat. Commun. 14, 2949 (2023).

    Article  CAS  Google Scholar 

  7. Carlson, K. M. et al. Greenhouse gas emissions intensity of global croplands. Nat. Clim. Change 7, 63–68 (2017).

    Article  CAS  Google Scholar 

  8. Muehe, E. M., Wang, T., Kerl, C. F., Planer-Friedrich, B. & Fendorf, S. Rice production threatened by coupled stresses of climate and soil arsenic. Nat. Commun. 10, 4985 (2019).

    Article  Google Scholar 

  9. Peng, S. et al. Rice yields decline with higher night temperature from global warming. Proc. Natl Acad. Sci. USA 101, 9971–9975 (2004).

    Article  CAS  Google Scholar 

  10. Cai, S. et al. Optimal nitrogen rate strategy for sustainable rice production in China. Nature 615, 73–79 (2023).

    Article  CAS  Google Scholar 

  11. Gilbertson, L. M. et al. Guiding the design space for nanotechnology to advance sustainable crop production. Nat. Nanotechnol. 15, 801–810 (2020).

    Article  CAS  Google Scholar 

  12. Zhang, P. et al. Nanotechnology and artificial intelligence to enable sustainable and precision agriculture. Nat. Plants 7, 864–876 (2021).

    Article  Google Scholar 

  13. Kah, M., Tufenkji, N. & White, J. C. Nano-enabled strategies to enhance crop nutrition and protection. Nat. Nanotechnol. 14, 532–540 (2019).

    Article  CAS  Google Scholar 

  14. Xu, J. et al. Fe3O4 nanoparticles affect paddy soil microbial-driven carbon and nitrogen processes: roles of surface coating and soil types. Environ. Sci. Nano 9, 2440–2452 (2022).

    Article  CAS  Google Scholar 

  15. An, Y. et al. Effect of bimetallic and polymer-coated Fe nanoparticles on biological denitrification. Bioresour. Technol. 101, 9825–9828 (2010).

    Article  CAS  Google Scholar 

  16. Shankramma, K., Yallappa, S., Shivanna, M. B. & Manjanna, J. Fe2O3 magnetic nanoparticles to enhance S. lycopersicum (tomato) plant growth and their biomineralization. Appl. Nanosci. 6, 983–990 (2016).

    Article  CAS  Google Scholar 

  17. Rui, M. et al. Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front. Plant Sci. 7, 00815 (2016).

    Article  Google Scholar 

  18. Rastogi, A. et al. Impact of metal and metal oxide nanoparticles on plant: a critical review. Front. Chem. 5, 78 (2017).

    Article  Google Scholar 

  19. Di Iorio, E. et al. Environmental implications of interaction between humic substances and iron oxide nanoparticles: a review. Chemosphere 303, 135172 (2022).

    Article  Google Scholar 

  20. Sun, X.-D. et al. Magnetite nanoparticle coating chemistry regulates root uptake pathways and iron chlorosis in plants. Proc. Natl Acad. Sci. USA 120, e2304306120 (2023).

    Article  CAS  Google Scholar 

  21. Singh, D., Sillu, D., Kumar, A. & Agnihotri, S. Dual nanozyme characteristics of iron oxide nanoparticles alleviate salinity stress and promote the growth of an agroforestry tree, Eucalyptus tereticornis Sm. Environ. Sci. Nano 8, 1308–1325 (2021).

    Article  CAS  Google Scholar 

  22. Guo, Y. et al. Air quality, nitrogen use efficiency and food security in China are improved by cost-effective agricultural nitrogen management. Nat. Food 1, 648–658 (2020).

    Article  CAS  Google Scholar 

  23. Zhu, J. et al. Cradle-to-grave emissions from food loss and waste represent half of total greenhouse gas emissions from food systems. Nat. Food 4, 247–256 (2023).

    Article  CAS  Google Scholar 

  24. Tawfik, M. M., Mohamed, M. H., Sadak, M. S. & Thalooth, A. T. Iron oxide nanoparticles effect on growth, physiological traits and nutritional contents of Moringa oleifera grown in saline environment. Bull. Natl Res. Cent. 45, 177 (2021).

    Article  Google Scholar 

  25. Sheykhbaglou, R., Sedghi, M. & Fathi-Achachlouie, B. The effect of ferrous nano-oxide particles on physiological traits and nutritional compounds of soybean (Glycine max L.) seed. An. Acad. Bras. Cienc. 90, 485–494 (2018).

    Article  CAS  Google Scholar 

  26. Wang, Y., Wang, H., He, J.-S. & Feng, X. Iron-mediated soil carbon response to water-table decline in an alpine wetland. Nat. Commun. 8, 15972 (2017).

    Article  CAS  Google Scholar 

  27. Moore, O. W. et al. Long-term organic carbon preservation enhanced by iron and manganese. Nature 621, 312–317 (2023).

    Article  CAS  Google Scholar 

  28. Hu, J. et al. Ferrous iron addition decreases methane emissions induced by rice straw in flooded paddy soils. ACS Earth Space Chem. 4, 843–853 (2020).

    Article  CAS  Google Scholar 

  29. Gómez-Sagasti, M. T. et al. The impact of nanoscale zero-valent iron particles on soil microbial communities is soil dependent. J. Hazard. Mater. 364, 591–599 (2019).

    Article  Google Scholar 

  30. He, S. et al. Different responses of soil microbial metabolic activity to silver and iron oxide nanoparticles. Chemosphere 147, 195–202 (2016).

    Article  CAS  Google Scholar 

  31. Feng, Y. Z. et al. The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth. Environ. Sci. Tech. 47, 9496–9504 (2013).

    Article  CAS  Google Scholar 

  32. Chen, J. & Sinsabaugh, R. L. Linking microbial functional gene abundance and soil extracellular enzyme activity: implications for soil carbon dynamics. Glob. Change Biol. 27, 1322–1325 (2021).

    Article  CAS  Google Scholar 

  33. Chen, J., Luo, Y. & Sinsabaugh, R. L. Subsoil carbon loss. Nat. Geosci. 16, 284–285 (2023).

    Article  CAS  Google Scholar 

  34. Cai, Y., Zheng, Y., Bodelier, P. L. E., Conrad, R. & Jia, Z. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils. Nat. Commun. 7, 11728 (2016).

    Article  CAS  Google Scholar 

  35. Ding, B. et al. Nitrogen loss through denitrification, anammox and Feammox in a paddy soil. Sci. Total Environ. 773, 145601 (2021).

    Article  CAS  Google Scholar 

  36. Yang, W. H., Weber, K. A. & Silver, W. L. Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction. Nat. Geosci. 5, 538–541 (2012).

    Article  CAS  Google Scholar 

  37. Chen, J., Luo, Y., Kätterer, T. & Olesen, J. E. Depth-dependent responses of soil organic carbon stock under annual and perennial cropping systems. Proc. Natl Acad. Sci. USA 119, e2203486119 (2022).

    Article  CAS  Google Scholar 

  38. Freeman, C., Ostle, N. & Kang, H. An enzymic ‘latch’ on a global carbon store. Nature 409, 149–150 (2001).

    Article  CAS  Google Scholar 

  39. Chen, J. et al. Differential responses of carbon-degrading enzyme activities to warming: implications for soil respiration. Glob. Change Biol. 24, 4816–4826 (2018).

    Article  Google Scholar 

  40. Sheykhbaglou, R., Sedghi, M., Tajbakhsh Shishevan, M. & Seyed Sharifi, R. Effects of nano-iron oxide particles on agronomic traits of soybean. Not. Sci. Biol. 2, 112–113 (2010).

    Article  Google Scholar 

  41. Islam, M. S. Sensing and uptake of nitrogen in rice plant: a molecular view. Rice Sci. 26, 343–355 (2019).

    Article  Google Scholar 

  42. Rahman, A., Kang, S., McGinnis, S. & Vikesland, P. J. Life cycle impact assessment of iron oxide (Fe3O4/γ-Fe2O3) nanoparticle synthesis routes. ACS Sustain. Chem. Eng. 10, 3155–3165 (2022).

    Article  CAS  Google Scholar 

  43. Lin, J. et al. The stabilizing mechanism of cadmium in contaminated soil using green synthesized iron oxide nanoparticles under long-term incubation. J. Hazard. Mater. 379, 120832 (2019).

    Article  CAS  Google Scholar 

  44. Zhang, X. et al. Comprehensive analysis of the impacts of iron-based nanoparticles and ions on Anammox process. Biochem. Eng. J. 180, 108371 (2022).

    Article  CAS  Google Scholar 

  45. Fang, Y. et al. Effect of foliar application of zinc, delenium, and iron fertilizers on nutrients concentration and yield of rice grain in China. J. Agric. Food Chem. 56, 2079–2084 (2008).

    Article  CAS  Google Scholar 

  46. Audebert, A. & Fofana, M. Rice yield gap due to iron toxicity in West Africa. J. Agron. Crop Sci. 195, 66–76 (2009).

    Article  CAS  Google Scholar 

  47. Zheng, X. et al. Environmental risk of microplastics after field aging: reduced rice yield without mitigating yield-scale ammonia volatilization from paddy soils. Environ. Pollut. 318, 120823 (2023).

    Article  CAS  Google Scholar 

  48. Cantera, R. G., Zamarreño, A. M. & García-Mina, J. M. Characterization of commercial iron chelates and their behavior in an alkaline and calcareous soil. J. Agric. Food Chem. 50, 7609–7615 (2002).

    Article  CAS  Google Scholar 

  49. Wintermans, J. F. G. M. & de Mots, A. Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol. Biochim. Biophys. Acta 109, 448–453 (1965).

    Article  CAS  Google Scholar 

  50. Liu, W. J. et al. Balanced stochastic versus deterministic assembly processes benefit diverse yet uneven ecosystem functions in representative agroecosystems. Environ. Microbiol. 23, 391–404 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (no. 2021YFD1700803), the National Natural Science Foundation of China (42177297, 41771295, 42277332) and CAS Strategic Priority Research Program (XDA28010302). M.D.-B. acknowledges support from the Spanish Ministry of Science and Innovation for the I+D+i project PID2020-115813RA-I00 funded by MCIN/AEI/10.13039/501100011033. M.D-B. was also supported by a project of the Fondo Europeo de Desarrollo Regional (FEDER) and the Consejería de Transformación Económica, Industria, Conocimiento y Universidades of the Junta de Andalucía (FEDER Andalucía 2014-2020 Objetivo temático “01 - Refuerzo de la investigación, el desarrollo tecnológico y la innovación”) associated with the research project P20_00879 (ANDABIOMA).

Author information

Authors and Affiliations

Authors

Contributions

Y.F., L.Y. and S.H. developed the original ideas. Yingliang Yu, L.X. and S.H. provided the original data. S.H., Yingliang Yu and L.X. contributed to lab analyses. Yongjie Yu, S.H., M.D.-B. and Y.F. conducted statistical analyses. Yongjie Yu, Y.F., L.Z., M.D.-B. and S.H. wrote the first draft of the manuscript, and all authors contributed substantially to revisions.

Corresponding authors

Correspondence to Youzhi Feng, Manuel Delgado-Baquerizo or Shiying He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Melanie Kah, Bruce Hungate and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7 and Tables 1–5.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Feng, Y., Yu, Y. et al. Closing the gap between climate regulation and food security with nano iron oxides. Nat Sustain (2024). https://doi.org/10.1038/s41893-024-01334-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41893-024-01334-6

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene