Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A new strategy using nanoscale zero-valent iron to simultaneously promote remediation and safe crop production in contaminated soil

Abstract

Novel versatile nanomaterials may facilitate strategies for simultaneous soil remediation and agricultural production, but a thorough and mechanistic assessment of efficacy and safety is needed. We have established a new soil remediation strategy using nanoscale zero-valent iron (nZVI) coupled with safe rice production in paddy soil contaminated with pentachlorophenol (PCP). In comparison with rice cultivation in contaminated soil with 100 mg PCP per kg soil but without nZVI, the addition of 100 mg nZVI per kg soil increased grain yield by 47.1–55.0%, decreased grain PCP content by 83.6–86.2% and increased the soil PCP removal rate from 49.9 to 83.9–89.0%. The specific role of nZVI-derived root iron plaque formation in the safe production of rice has been elucidated, and the synergistic effect of nZVI treatment and rice cultivation identified in the nZVI-facilitated rhizosphere microbial degradation of PCP. This work opens a new strategy for the application of nanomaterials in soil remediation that could simultaneously enable safe crop production in contaminated lands.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effects of iron species on soil remediation and crop production.
Fig. 2: Characteristics of iron plaque.
Fig. 3: Influences of nZVI100 on the environmental fate of PCP and microbial communities.
Fig. 4: Effects of nZVI on PCP bioreduction process in soil extracts.
Fig. 5: Strategy using nZVI for simultaneous soil remediation and safe crop production.

Similar content being viewed by others

Date availability

The data that support the findings of this study and the code for PARAFAC modelling with MATLAB 7.0 are available from the corresponding author upon reasonable request. The raw files for the 16S rDNA extracted from different soil samples can be accessed from the NCBI Sequence Read Archive (SRA) platform through ID SRP260156. Source data are provided with this paper.

References

  1. Ehlers, L. J. & Luthy, R. G. Contaminant bioavailability in soil and sediment. Environ. Sci. Technol. 37, 295A–302A (2003).

    CAS  Google Scholar 

  2. Rodríguez-Eugenio, N., McLaughlin, M. & Pennock, D. Soil Pollution: A Hidden Reality (Food and Agriculture Organization of the United Nations, 2018); http://agris.fao.org/agris-search/search.do?recordID=XF2018001459

  3. The State of Food Security and Nutrition in the World (Food and Agriculture Organization of the United Nations, 2020); http://www.fao.org/publications/sofi/en/

  4. Brandl, F., Bertrand, N., Lima, E. M. & Langer, R. Nanoparticles with photoinduced precipitation for the extraction of pollutants from water and soil. Nat. Commun. 6, 7765 (2015).

    CAS  Google Scholar 

  5. Matheson, L. J. & Tratnyek, P. G. Reductive dehalogenation of chlorinated methanes by iron metal. Environ. Sci. Technol. 28, 2045–2053 (1994).

    CAS  Google Scholar 

  6. Lombi, E., Donner, E., Dusinska, M. & Wickson, F. A one health approach to managing the applications and implications of nanotechnologies in agriculture. Nat. Nanotechnol. 14, 523–531 (2019).

    CAS  Google Scholar 

  7. Lowry, G. V., Avellan, A. & Gilbertson, L. M. Opportunities and challenges for nanotechnology in the agri-tech revolution. Nat. Nanotechnol. 14, 517–522 (2019).

    CAS  Google Scholar 

  8. Wang, J. et al. Higher concentrations of nanoscale zero-valent iron (nZVI) in soil induced rice chlorosis due to inhibited active iron transportation. Environ. Pollut. 210, 338–345 (2016).

    CAS  Google Scholar 

  9. El-Temsah, Y. S., Sevcu, A., Bobcikova, K., Cernik, M. & Joner, E. J. DDT degradation efficiency and ecotoxicological effects of two types of nano-sized zero-valent iron (nZVI) in water and soil. Chemosphere 144, 2221–2228 (2016).

    CAS  Google Scholar 

  10. Wu, J., Xie, Y., Fang, Z., Cheng, W. & Tsang, P. E. Effects of Ni/Fe bimetallic nanoparticles on phytotoxicity and translocation of polybrominated diphenyl ethers in contaminated soil. Chemosphere 162, 235–242 (2016).

    CAS  Google Scholar 

  11. Gong, X. et al. Stabilized nanoscale zerovalent iron mediated cadmium accumulation and oxidative damage of Boehmeria nivea (L.) gaudich cultivated in cadmium contaminated sediments. Environ. Sci. Technol. 51, 11308–11316 (2017).

    CAS  Google Scholar 

  12. Brasili, E. et al. Remediation of hexavalent chromium contaminated water through zero-valent iron nanoparticles and effects on tomato plant growth performance. Sci. Rep. 10, 1920 (2020).

    CAS  Google Scholar 

  13. IGC Grain Market Report (International Grains Council, 2020); http://www.igc.int/en/gmr_summary.aspx#

  14. Zheng, W., Yu, H., Wang, X. & Qu, W. Systematic review of pentachlorophenol occurrence in the environment and in humans in China: not a negligible health risk due to the re-emergence of schistosomiasis. Environ. Int. 42, 105–116 (2012).

    CAS  Google Scholar 

  15. Auffan, M. et al. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol. 10, 634–641 (2009).

    Google Scholar 

  16. Papaefthymiou, G. C. Nanoparticle magnetism. Nano Today 5, 438–447 (2009).

    Google Scholar 

  17. Peng, C. et al. Iron plaque: a barrier layer to the uptake and translocation of copper oxide nanoparticles by rice plants. Environ. Sci. Technol. 52, 12244–12254 (2018).

    CAS  Google Scholar 

  18. Yan, D., Ma, W., Song, X. & Bao, Y. The effect of iron plaque on uptake and translocation of norfloxacin in rice seedlings grown in paddy soil. Environ. Sci. Pollut. Res. 24, 7544–7554 (2017).

    CAS  Google Scholar 

  19. Otte, M. L., Rozema, J., Koster, L., Haarsma, M. S. & Broekman, R. A. Iron plaque on roots of Aster tripolium L.: interaction with zinc uptake. New Phytol. 111, 309–317 (2010).

    Google Scholar 

  20. Chen, M. et al. Dynamics of the microbial community and Fe(III)-reducing and dechlorinating microorganisms in response to pentachlorophenol transformation in paddy soil. J. Hazard. Mater. 312, 97–105 (2016).

    CAS  Google Scholar 

  21. Zhang, C., Ge, Y., Yao, H., Chen, X. & Hu, M. Iron oxidation-reduction and its impacts on cadmium bioavailability in paddy soils: a review. Front. Environ. Sci. Eng. 6, 509–517 (2012).

    CAS  Google Scholar 

  22. Tso, C. P. & Shih, Y. H. The reactivity of well-dispersed zero valent iron nanoparticles toward pentachlorophenol in water. Water Res. 72, 372–380 (2014).

    Google Scholar 

  23. Lowry, G. V. & Johnson, K. M. Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. Environ. Sci. Technol. 38, 5208–5216 (2004).

    CAS  Google Scholar 

  24. Kim, J. H., Tratnyek, P. G. & Chang, Y. S. Rapid dechlorination of polychlorinated dibenzo-p-dioxins by bimetallic and nanosized zerovalent iron. Environ. Sci. Technol. 42, 4106–4112 (2008).

    CAS  Google Scholar 

  25. Xiu, Z. M. et al. Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene. Bioresour. Technol. 101, 1141–1146 (2010).

    CAS  Google Scholar 

  26. Li, H. et al. Biochar mediates activation of aged nanoscale ZVI by Shewanella putrefaciens CN32 to enhance the degradation of pentachlorophenol. Chem. Eng. J. 368, 148–156 (2019).

    CAS  Google Scholar 

  27. Collins, C., Fryer, M. & Grosso, A. Plant uptake of non-ionic organic chemicals. Environ. Sci. Technol. 40, 45–52 (2006).

    CAS  Google Scholar 

  28. Briggs, G. G., Bromilow, R. H. & Evans, A. A. Relationships between lipophilicity and root uptake and translocation of non-ionised chemicals by barley. Pest Manag. Sci. 13, 495–504 (2006).

    Google Scholar 

  29. Chaudhry, Q., Blom-Zandstra, M., Gupta, S. K. & Joner, E. Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ. Sci. Pollut. Res. 12, 34–48 (2005).

    CAS  Google Scholar 

  30. Terry, M. & D’Angelo, E. M. [14C]Pentachlorophenol mineralization in the rice rhizosphere with established oxidized and reduced soil layers. Chemosphere 61, 48–55 (2005).

    Google Scholar 

  31. Keum, Y. S. & Li, Q. X. Reductive debromination of polybrominated diphenyl ethers by zerovalent iron. Environ. Sci. Technol. 39, 2280–2286 (2005).

    CAS  Google Scholar 

  32. Wang, S. et al. Integration of organohalide-respiring bacteria and nanoscale zero-valent iron (Bio-nZVI-RD): a perfect marriage for the remediation of organohalide pollutants? Biotechnol. Adv. 34, 1384–1395 (2016).

    CAS  Google Scholar 

  33. Zhang, W. X. Nanoscale iron particles for environmental remediation: an overview. J. Nanopart. Res. 5, 323–332 (2003).

    CAS  Google Scholar 

  34. Reardon, E. J., Randal, F., Vogan, J. L. & Andrzej, P. Anaerobic corrosion reaction kinetics of nanosized iron. Environ. Sci. Technol. 42, 2420–2425 (2008).

    CAS  Google Scholar 

  35. Adeleye, A. S. et al. Influence of phytoplankton on fate and effects of modified zerovalent iron nanoparticles. Environ. Sci. Technol. 50, 5597–5605 (2016).

    CAS  Google Scholar 

  36. Gu, A. Z., Hedlund, B. P., Staley, J. T., Strand, S. E. & Stensel, H. D. Analysis and comparison of the microbial community structures of two enrichment cultures capable of reductively dechlorinating TCE and cis‐DCE. Environ. Microbiol. 6, 45–54 (2004).

    CAS  Google Scholar 

  37. Yang, J., Liu, P. & Conrad, R. Response of fermenting bacterial and methanogenic archaeal communities in paddy soil to progressing rice straw degradation. Soil Biol. Biochem. 124, 70–80 (2018).

    Google Scholar 

  38. Farrell, J., Melitas, N., Kason, M. & Li, T. Electrochemical and column investigation of iron-mediated reductive dechlorination of trichloroethylene and perchloroethylene. Environ. Sci. Technol. 34, 2549–2556 (2000).

    CAS  Google Scholar 

  39. Tong, H., Hu, M., Li, F. B., Liu, C. S. & Chen, M. J. Biochar enhances the microbial and chemical transformation of pentachlorophenol in paddy soil. Soil Biol. Biochem. 70, 142–150 (2014).

    CAS  Google Scholar 

  40. Scelza, R., Rao, M. A. & Gianfreda, L. Response of an agricultural soil to pentachlorophenol (PCP) contamination and the addition of compost or dissolved organic matter. Soil Biol. Biochem. 40, 2162–2169 (2008).

    CAS  Google Scholar 

  41. Zhang, C. & Katayama, A. Humin as an electron mediator for microbial reductive dehalogenation. Environ. Sci. Technol. 46, 6575–6583 (2012).

    CAS  Google Scholar 

  42. Lei, C., Zhang, L. Q., Yang, K., Zhu, L. Z. & Lin, D. H. Toxicity of iron-based nanoparticles to green algae: effects of particle size, crystal phase, oxidation state and environmental aging. Environ. Pollut. 218, 505–512 (2016).

    CAS  Google Scholar 

  43. Wu, S. et al. Nano zero-valent iron mediated metal(loid) uptake and translocation by arbuscular mycorrhizal symbioses. Environ. Sci. Technol. 52, 7640–7651 (2018).

    CAS  Google Scholar 

  44. Gu, H. et al. Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil. Chemosphere 83, 1234–1240 (2011).

    CAS  Google Scholar 

  45. Chen, J., Le, X. C. & Zhu, L. Metabolomics and transcriptomics reveal defense mechanism of rice (Oryza sativa) grains under stress of 2,2′,4,4′-tetrabromodiphenyl ether. Environ. Int. 133, 105154 (2019).

    CAS  Google Scholar 

  46. Amaral, D. C., Lopes, G., Guilherme, L. R. & Seyfferth, A. L. A new approach to sampling intact Fe plaque reveals Si-induced changes in Fe mineral composition and shoot As in rice. Environ. Sci. Technol. 51, 38–45 (2017).

    CAS  Google Scholar 

  47. Barnett, S. J., Halliwell, M. A., Crammond, N. J., Adam, C. D. & Jackson, A. R. W. Study of thaumasite and ettringite phases formed in sulfate/blast furnace slag slurries using XRD full pattern fitting. Cem. Concr. Compos. 24, 339–346 (2002).

    CAS  Google Scholar 

  48. Bortolotti, M., Lutterotti, L. & Pepponi, G. Combining XRD and XRF analysis in one Rietveld-like fitting. Powder Diffr. 32, S225–S230 (2017).

    CAS  Google Scholar 

  49. Tanja, M. & Steven, L. S. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

    Google Scholar 

  50. Robert, C. E. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).

    Google Scholar 

  51. Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2220 (2011).

    CAS  Google Scholar 

  52. Wang, Q., Garrity, M. G., Tiedje, J. M. & Cole, J. R. Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microb. 73, 5261–5267 (2007).

    CAS  Google Scholar 

  53. Liebeke, M. et al. Chemical characterization of soil extract as growth media for the ecophysiological study of bacteria. Appl. Microbiol. Biotechnol. 83, 161–173 (2009).

    CAS  Google Scholar 

  54. Rae, I. C. M. & Castro, T. F. Root exudates of the rice plant in relation to Akagare, a physiological disorder of rice. Plant Soil 26, 317–323 (1967).

    Google Scholar 

  55. Yang, C., Liu, Y., Cen, Q., Zhu, Y. & Zhang, Y. Insight into the heterogeneous adsorption of humic acid fluorescent components on multi-walled carbon nanotubes by excitation-emission matrix and parallel factor analysis. Ecotoxicol. Environ. Saf. 148, 194–200 (2018).

    CAS  Google Scholar 

  56. Karimaei, M. et al. Optimization of a methodology for simultaneous determination of twelve chlorophenols in environmental water samples using in situ derivatization and continuous sample drop flow microextraction combined with gas chromatography-electron-capture detection. Anal. Methods 9, 2865–2872 (2017).

    CAS  Google Scholar 

  57. Fredrickson, J. K. & Gorby, Y. A. Environmental processes mediated by iron-reducing bacteria. Curr. Opin. Biotechnol. 7, 287–294 (1996).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2017YFA0207003), the National Natural Science Foundation of China (21525728 and 21621005) and Zhejiang Provincial Natural Science Foundation of China (LD21B070001). J.C.W. acknowledges USDA NIFA Hatch (CONH00147).

Author information

Authors and Affiliations

Authors

Contributions

D.L. and Y.L. designed the experiments. Y.L. and T.W. performed the experiments. Y.L. performed the data analyses and wrote the paper. D.L. and J.C.W. revised the paper. D.L. acquired the funding.

Corresponding author

Correspondence to Daohui Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Adeyemi Adeleye, Xiaohong Guan and Navid Saleh for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Distribution of iron in rice.

Iron contents of leaf (a), stem (b), and root (c) and the iron plaque contents (d) of rice samples cultivated for 30, 70, and 140 days under the treatments of different doses of nZVI100; (e) the iron contents of harvested grains in the PCP-contaminated soil (100 mg/kg) after treatment with different doses of nZVI100 for 140 days. Error bars represent standard deviations for the corresponding mean values (n = 3). Different letters for a group of data indicate significant difference (P < 0.05).

Source data

Extended Data Fig. 2 Biomass and leaf chlorophylla contents of rice.

(a) Leaf, (b) stem, and (c) root biomass and (d) leaf chlorophylla contents of rice samples after cultivation in PCP-contaminated soil (100 mg/kg) with different doses of nZVI100 for 30, 70, and 140 days. Error bars represent standard deviations for the corresponding mean values (n = 3). Different letters for a group of data indicate significant difference (P < 0.05).

Source data

Extended Data Fig. 3 Distribution of CPs in rice and XRD spectra of the iron plaque.

CPs content of (a) leaf, (b) stem, and (c) root after cultivation in the contaminated soil with 100 mg (375 μmol) PCP per kg soil for different time periods with different doses of nZVI100; (d) XRD spectra of the iron plaque on rice root after cultivating in PCP-contaminated soil (100 mg per kg soil) with 100 mg nZVI100 per kg soil for 30 days. Error bars represent standard deviations for the corresponding mean values (n = 3).

Source data

Extended Data Fig. 4 CPs contents of rice seeds and rice tissues.

Changes in CPs contents of (a) rice seeds and (b) rice tissues against the dose of nZVI100 in the contaminated soil with 100 mg (375 μmol) PCP per kg soil.

Source data

Extended Data Fig. 5 Dynamic changes of iron species.

Contents of (a) Fe3+ and (b) Fe2+ in contaminated soil (100 mg PCP per kg soil) with different doses of nZVI100 at 30, 70, and 140 days. Error bars in panels a, and b represent standard deviations for the corresponding mean values (n = 3).

Source data

Extended Data Fig. 6 Spectral characteristics of C1, C2, and C3 fractions identified by EEMs-PARAFAC.

(a-c) Spectral characteristics of C1, C2, and C3 fractions identified by EEMs-PARAFAC for all treatments of the sterilized and unsterilized soil extracts after incubation for 15 days.

Source data

Extended Data Fig. 7 characteristics of mZVI.

(a) TEM and (b) EDS characteristics of mZVI.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–11, Tables 1–6, Texts 1–10 and refs. 1–14.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 7

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wu, T., White, J.C. et al. A new strategy using nanoscale zero-valent iron to simultaneously promote remediation and safe crop production in contaminated soil. Nat. Nanotechnol. 16, 197–205 (2021). https://doi.org/10.1038/s41565-020-00803-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-020-00803-1

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research