Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sustainable ammonia production enabled by membrane reactor

Abstract

The ammonia industry is crucial for the global supply of food through economical production of fertilizers in quantity, and it allows for the development of catalytic chemistry and technologies with ammonia as a promising carbon-free energy carrier. Although the Haber–Bosch process, where hydrogenolysis of nitrogen takes place over a promoted iron catalyst under harsh conditions, will continue to play a key role, its massive carbon footprint and energy consumption call for more sustainable production methods ideally at near ambient pressure. Here, we show a green route for the synthesis of ammonia using a nitrogen permeable membrane reactor. In the absence of an external pressure, our membrane reactor delivers a nitrogen flux of 3.1 × 10−2 ml cm−2 h−1, leading to an ammonia yield rate of 2.9 μmol cm−2 h−1 at 450 °C. The reaction of permeated N3− ions with H2 gives rise to a high ammonia concentration of 0.097 vol% in the gas phase, which is close to the limit of thermodynamic equilibrium (0.1 vol%) under the identical condition. This work not only creates a greener path for ambient-pressure ammonia synthesis but also presents a new membrane reactor design that could find applications in other areas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic diagram of working principle of ammonia synthesis with nitride membrane reactor.
Fig. 2: Nitrogen permeation in nitride membrane reactor.
Fig. 3: Measurement of ammonia synthesis in the membrane reactor.
Fig. 4: Reactors with different nitride membranes.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available from the public repository: https://yunpan.360.cn/surl_yvqgghBnccC (Code: f2f2). Source data are provided with this paper.

References

  1. Chen, J. G. et al. Beyond fossil fuel-driven nitrogen transformations. Science 360, 873 (2018).

    CAS  Google Scholar 

  2. Foster, S. L. et al. Catalysts for nitrogen reduction to ammonia. Nat. Catal. 1, 490–500 (2018).

    Article  Google Scholar 

  3. Sippel, D. et al. A bound reaction intermediate sheds light on the mechanism of nitrogenase. Science 359, 1484–1489 (2018).

    Article  CAS  Google Scholar 

  4. Ashida, Y., Arashiba, K., Nakajima, K. & Nishibayashi, Y. Molybdenum-catalysed ammonia production with samarium diiodide and alcohols or water. Nature 568, 536–540 (2019).

    Article  CAS  Google Scholar 

  5. Claus, J. H. et al. Catalyst design by interpolation in the periodic table: bimetallic ammonia synthesis catalysts. J. Am. Chem. Soc. 123, 8404–8405 (2001).

    Article  CAS  Google Scholar 

  6. Martín, A. J., Shinagawa, T. & Pérez–Ramírez, J. Electrocatalytic reduction of nitrogen: from Haber–Bosch to ammonia artificial leaf. Chem 5, 263–283 (2019).

    Article  CAS  Google Scholar 

  7. Buren, S., Jiménez-Vicente, E., Echavarri-Erasun, C. & Rubio, L. M. Biosynthesis of nitrogenase cofactors. Chem. Rev. 120, 4921–4968 (2020).

    Article  CAS  Google Scholar 

  8. Vicente, E. J. & Dean, D. R. Keeping the nitrogen-fixation dream alive. Proc. Natl Acad. Sci. USA 114, 3009–3011 (2017).

    Article  CAS  Google Scholar 

  9. Milton, R. D. et al. The in vivo potential-regulated protective protein of nitrogenase in Azotobacter vinelandii supports aerobic bioelectrochemical dinitrogen reduction in vitro. J. Am. Chem. Soc. 139, 9044–9052 (2017).

    Article  CAS  Google Scholar 

  10. Faria, J. A. Renaissance of ammonia synthesis for sustainable production of energy and fertilizers. Curr. Opin. Green Sustain. Chem. 29, 100466 (2021).

    Article  CAS  Google Scholar 

  11. Barboun, P. M. & Hicks, J. C. Unconventional catalytic approaches to ammonia synthesis. Annu. Rev. Chem. Biomol. Eng. 11, 503–521 (2020).

    Article  CAS  Google Scholar 

  12. Qing, G. et al. Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem. Rev. 120, 5437–5516 (2020).

    Article  CAS  Google Scholar 

  13. Ye, T. N. et al. Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst. Nature 583, 391–395 (2020).

    Article  CAS  Google Scholar 

  14. Zhao, S., Lu, X., Wang, L., Gale, J. & Amal, R. Carbon-based metal-free catalysts for electrocatalytic reduction of nitrogen for synthesis of ammonia at ambient conditions. Adv. Mater. 31, 1805367 (2019).

    Article  CAS  Google Scholar 

  15. Cui, X., Tang, C. & Zhang, Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 8, 1800369 (2018).

    Article  CAS  Google Scholar 

  16. Giddey, S., Badwal, S. P. S. & Kulkarni, A. Review of electrochemical ammonia production technologies and materials. Int. J. Hydrogen Energy 38, 14576–14594 (2013).

    Article  CAS  Google Scholar 

  17. Medford, A. J. & Hatzell, M. C. Photon-driven nitrogen fixation: current progress, thermodynamic considerations, and future outlook. ACS Catal. 7, 2624–2643 (2017).

    Article  CAS  Google Scholar 

  18. Guo, C., Ran, J., Vasileff, A. & Qiao, S. Z. Rational design of electrocatalysts and photo(electro) catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 11, 45–56 (2018).

    Article  CAS  Google Scholar 

  19. Chen, G., Hou, Z. & Gong, X. Structural and electronic properties of cubic HfO2 surfaces. Comp. Mater. Sci. 44, 46–52 (2008).

    Article  CAS  Google Scholar 

  20. Lin, G., Su, Y., Duan, X. & Xie, K. High-density Lewis acid sites in porous single-crystalline monoliths to enhance propane dehydrogenation at reduced temperatures. Angew. Chem. Int. Ed. Engl. 60, 9311–9315 (2021).

    Article  CAS  Google Scholar 

  21. Jin, L., Cheng, F., Li, H. & Xie, K. Porous tantalum nitride single crystal at two-centimeter scale with enhanced photoelectrochemical performance. Angew. Chem. Int. Ed. Engl. 59, 8891–8895 (2020).

    Article  CAS  Google Scholar 

  22. Lin, G., Li, H. & Xie, K. Twisted surfaces in porous single crystals to deliver enhanced catalytic activity and stability. Angew. Chem. Int. Ed. Engl. 59, 16440–16444 (2020).

    Article  CAS  Google Scholar 

  23. Hunter, S. M. et al. A study of 15N/14N isotopic exchange over cobalt molybdenum nitrides. ACS Catal. 3, 1719–1725 (2013).

    Article  CAS  Google Scholar 

  24. Cui, H., Zhu, G., Liu, X., Liu, F. & Huang, F. Niobium nitride Nb4N5 as a new high-performance electrode material for supercapacitors. Adv. Sci. 2, 1500126 (2015).

    Article  CAS  Google Scholar 

  25. Heyl, D. et al. Alcohol synthesis from CO2, H2, and olefins over alkali-promoted Au catalysts—a catalytic and in situ FTIR spectroscopic study. ChemSusChem 12, 651–660 (2019).

    Article  CAS  Google Scholar 

  26. Bera, M., Prabhakar, A. & Maji, P. K. Nanotailoring of thermoplastic polyurethane by amine functionalized graphene oxide: effect of different amine modifier on final properties. Compos. B 195, 108075 (2020).

    Article  CAS  Google Scholar 

  27. Drews, M. et al. Pathways of glutamine metabolism in Spodoptera frugiperda (Sf9) insect cells: evidence for the presence of the nitrogen assimilation system, and a metabolic switch by 1H/15N NMR. J. Biotechnol. 78, 23–37 (2000).

    Article  CAS  Google Scholar 

  28. Ivanov, A. I. et al. Cisplatin binding sites on human albumin. J. Biol. Chem. 273, 14721–14730 (1998).

    Article  CAS  Google Scholar 

  29. Cui, Z., Zu, C., Zhou, W., Manthiram, A. & Goodenough, J. B. Mesoporous titanium nitride-enabled highly stable lithium–sulfur batteries. Adv. Mater. 28, 6926–6931 (2016).

    Article  CAS  Google Scholar 

  30. Yang, M., Cui, Z. & Disalvo, F. J. Mesoporous chromium nitride as a high performance non-carbon support for the oxygen reduction reaction. Phys. Chem. Chem. Phys. 15, 7041–7044 (2013).

    Article  CAS  Google Scholar 

  31. Ziehfreund, A., Simon, U. & Maier, W. F. Oxygen ion conductivity of platinum impregnated stabilized zirconia in bulk and microporous materials. Adv. Mater. 8, 424–427 (1996).

    Article  CAS  Google Scholar 

  32. Ye, L. et al. Enhancing CO2 electrolysis through synergistic control of non-stoichiometry and doping to tune cathode surface structures. Nat. Commun. 8, 14785 (2017).

    Article  CAS  Google Scholar 

  33. Wang, W. et al. Ammonia synthesis at atmospheric pressure using a reactor with thin solid electrolyte BaCe0.85Y0.15O3−δ membrane. J. Membr. Sci. 360, 397–403 (2010).

    Article  CAS  Google Scholar 

  34. Li, Z. et al. Preparation of double-doped BaCeO3 and its application in the synthesis of ammonia at atmospheric pressure. Sci. Technol. Adv. Mat. 8, 566–570 (2007).

    Article  CAS  Google Scholar 

  35. Hattori, M., Iijima, S., Nakao, T., Hosono, H. & Hara, M. Solid solution for catalytic ammonia synthesis from nitrogen and hydrogen gases at 50 °C. Nat. Commun. 11, 2001 (2020).

    Article  CAS  Google Scholar 

  36. Ogawa, T. et al. High electron density on Ru in intermetallic YRu2: the application to catalyst for ammonia synthesis. J. Phys. Chem. C. 122, 10468–10475 (2018).

    Article  CAS  Google Scholar 

  37. Dawson, R. D., Elwell, D. & Brice, J. C. Top seeded solution growth of sodium niobate. J. Cryst. Growth 23, 65–70 (1974).

    Article  CAS  Google Scholar 

  38. Fukuda, T. & Uematsu, Y. Preparation of KNbO3 single crystal for optical applications. Jpn. J. Appl. Phys. 11, 163–169 (2014).

    Article  Google Scholar 

  39. Ventruti, G., Della Ventura, G., Scordari, F., Susta, U. & Gualtieri, A. F. In situ high-temperature XRD and FTIR investigation of hohmannite, a water-rich Fe-sulfate, and its decomposition products. J. Therm. Anal. Calorim. 119, 1793–1802 (2015).

    Article  CAS  Google Scholar 

  40. Bell, V. A., Feeley, J. S., Deeba, M. & Farrauto, R. J. In situ high temperature FTIR studies of NOx reduction with propylene over Cu/ZSM–5 catalysts. Catal. Lett. 29, 15–26 (1994).

    Article  CAS  Google Scholar 

  41. Chen, G. et al. Roadmap on sustainable mixed ionic–electronic conducting membranes. Adv. Funct. Mater. 32, 2105702 (2022).

    Article  CAS  Google Scholar 

  42. Zhu, X. & Yang, W. Microstructural and interfacial designs of oxygen-permeable membranes for oxygen separation and reaction–separation coupling. Adv. Mater. 31, 1902547 (2019).

    Article  CAS  Google Scholar 

  43. Zhang, Y. et al. Thermal-expansion offset for high-performance fuel cell cathodes. Nature 591, 246–251 (2021).

    Article  CAS  Google Scholar 

  44. Duan, C. et al. Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells. Nature 557, 217–222 (2018).

    Article  CAS  Google Scholar 

  45. Kresse, G. & Furthmüller, J. Efficiency of ab–initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  46. Honkala, K. et al. Ammonia synthesis from first-principles calculations. Science 307, 555–558 (2005).

    Article  CAS  Google Scholar 

  47. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  48. Henkelman, G., Uberuaga, B. P. & Jonsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

  49. Abghoui, Y., Garden, A. L., Howalt, J. G., Vegge, T. & Skúlason, E. Electroreduction of N2 to ammonia at ambient conditions on mononitrides of Zr, Nb, Cr, and V: a DFT guide for experiments. ACS Catal. 6, 635–646 (2015).

    Article  CAS  Google Scholar 

  50. Azofra, L. M., Sun, C., Cavallo, L. & MacFarlane, D. R. Feasibility of N2 binding and reduction to ammonia on Fe-deposited MoS2 2D sheets: a DFT study. Chem. Eur. J. 23, 8275–8279 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

K.X. acknowledges funding from National Key Research and Development Program of China (2017YFA0700102) and Natural Science Foundation of China (91845202). L.Y. acknowledges funding from Natural Science Foundation of China (22002167).

Author information

Authors and Affiliations

Authors

Contributions

L.Y. conducted the experiments. H.L. conducted the theoretical calculations. K.X. supervised the work.

Corresponding author

Correspondence to Kui Xie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Jiazhen Wu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1 and Figs. 1–32.

Source data

Source Data Fig. 1

Picture.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, L., Li, H. & Xie, K. Sustainable ammonia production enabled by membrane reactor. Nat Sustain 5, 787–794 (2022). https://doi.org/10.1038/s41893-022-00908-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-022-00908-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing