Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Digging deeper: methodologies for high-content phenotyping in Caenorhabditis elegans

Abstract

Deep phenotyping is an emerging conceptual paradigm and experimental approach aimed at measuring and linking many aspects of a phenotype to understand its underlying biology. To date, deep phenotyping has been applied mostly in cultured cells and used less in multicellular organisms. However, in the past decade, it has increasingly been recognized that deep phenotyping could lead to a better understanding of how genetics, environment and stochasticity affect the development, physiology and behavior of an organism. The nematode Caenorhabditis elegans is an invaluable model system for studying how genes affect a phenotypic trait, and new technologies have taken advantage of the worm’s physical attributes to increase the throughput and informational content of experiments. Coupling of these technical advancements with computational and analytical tools has enabled a boom in deep-phenotyping studies of C. elegans. In this Review, we highlight how these new technologies and tools are digging into the biological origins of complex, multidimensional phenotypes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microfluidics enables high-throughput experimentation in C. elegans.
Fig. 2: Deep phenotyping produces informationally rich datasets.
Fig. 3: Behavioral deep phenotyping of worms using automated trackers.

Similar content being viewed by others

References

  1. Houle, D., Govindaraju, D. R. & Omholt, S. Phenomics: the next challenge. Nat. Rev. Genet. 11, 855–866 (2010).

    CAS  PubMed  Google Scholar 

  2. Raj, A. & van Oudenaarden, A. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135, 216–226 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Honegger, K. & de Bivort, B. Stochasticity, individuality and behavior. Curr. Biol. 28, R8–R12 (2018).

    CAS  PubMed  Google Scholar 

  4. Tracy, R. P. ‘Deep phenotyping’: characterizing populations in the era of genomics and systems biology. Curr. Opin. Lipidol. 19, 151–157 (2008).

    CAS  PubMed  Google Scholar 

  5. Corsi, A. K., Wightman, B. & Chalfie, M. A transparent window into biology: a primer on Caenorhabditis elegans. Genetics 200, 387–407 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Shaye, D. D. & Greenwald, I. OrthoList: a compendium of C. elegans genes with human orthologs. PLoS One 6, e20085 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ellis, H. M. & Horvitz, H. R. Genetic control of programmed cell death in the nematode C. elegans. Cell 44, 817–829 (1986).

    CAS  PubMed  Google Scholar 

  8. Hedgecock, E. M., Culotti, J. G. & Hall, D. H. The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron 4, 61–85 (1990).

    CAS  PubMed  Google Scholar 

  9. Ishii, N., Wadsworth, W. G., Stern, B. D., Culotti, J. G. & Hedgecock, E. M. UNC-6, a laminin-related protein, guides cell and pioneer axon migrations in C. elegans. Neuron 9, 873–881 (1992).

    CAS  PubMed  Google Scholar 

  10. Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

    CAS  PubMed  Google Scholar 

  11. Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862 (1993).

    CAS  PubMed  Google Scholar 

  12. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    CAS  PubMed  Google Scholar 

  13. Fadeel, B. & Orrenius, S. Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease. J. Intern. Med. 258, 479–517 (2005).

    CAS  PubMed  Google Scholar 

  14. Lekka, E. & Hall, J. Noncoding RNAs in disease. FEBS Lett. 592, 2884–2900 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Van Battum, E. Y., Brignani, S. & Pasterkamp, R. J. Axon guidance proteins in neurological disorders. Lancet Neurol. 14, 532–546 (2015).

    PubMed  Google Scholar 

  16. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Timmons, L., Court, D. L. & Fire, A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263, 103–112 (2001).

    CAS  PubMed  Google Scholar 

  18. Timmons, L. & Fire, A. Specific interference by ingested dsRNA. Nature 395, 854 (1998).

    CAS  PubMed  Google Scholar 

  19. Kamath, R. S. et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237 (2003).

    CAS  PubMed  Google Scholar 

  20. Rual, J. F. et al. Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library. Genome Res. 14, 2162–2168 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Dickinson, D. J. & Goldstein, B. CRISPR-based methods for Caenorhabditis elegans genome engineering. Genetics 202, 885–901 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Farboud, B. Targeted genome editing in Caenorhabditis elegans using CRISPR/Cas9. Wiley Interdiscip. Rev. Dev. Biol. 6, e287 (2017).

    Google Scholar 

  23. Crane, M. M., Chung, K., Stirman, J. & Lu, H. Microfluidics-enabled phenotyping, imaging, and screening of multicellular organisms. Lab. Chip 10, 1509–1517 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chung, K., Crane, M. M. & Lu, H. Automated on-chip rapid microscopy, phenotyping and sorting of C. elegans. Nat. Methods 5, 637–643 (2008).

    CAS  PubMed  Google Scholar 

  25. Ben-Yakar, A., Chronis, N. & Lu, H. Microfluidics for the analysis of behavior, nerve regeneration, and neural cell biology in C. elegans. Curr. Opin. Neurobiol 19, 561–567 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Cornaglia, M., Lehnert, T. & Gijs, M. A. M. Microfluidic systems for high-throughput and high-content screening using the nematode Caenorhabditis elegans. Lab. Chip 17, 3736–3759 (2017).

    CAS  PubMed  Google Scholar 

  27. Lee, H. et al. A multi-channel device for high-density target-selective stimulation and long-term monitoring of cells and subcellular features in C. elegans. Lab. Chip 14, 4513–4522 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Albrecht, D. R. & Bargmann, C. I. High-content behavioral analysis of Caenorhabditis elegans in precise spatiotemporal chemical environments. Nat. Methods 8, 599–605 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Chung, K. et al. Microfluidic chamber arrays for whole-organism behavior-based chemical screening. Lab. Chip 11, 3689–3697 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Churgin, M. A. et al. Longitudinal imaging of Caenorhabditis elegans in a microfabricated device reveals variation in behavioral decline during aging. Elife 6, e26652 (2017).

    PubMed  PubMed Central  Google Scholar 

  31. Pittman, W. E., Sinha, D. B., Zhang, W. B., Kinser, H. E. & Pincus, Z. A simple culture system for long-term imaging of individual C. elegans. Lab. Chip 17, 3909–3920 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Crane, M. M. et al. Autonomous screening of C. elegans identifies genes implicated in synaptogenesis. Nat. Methods 9, 977–980 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Krajniak, J., Hao, Y., Mak, H. Y. & Lu, H. C.L.I.P.—continuous live imaging platform for direct observation of C. elegans physiological processes. Lab. Chip 13, 2963–2971 (2013).

    CAS  PubMed  Google Scholar 

  34. Kopito, R. B. & Levine, E. Durable spatiotemporal surveillance of Caenorhabditis elegans response to environmental cues. Lab. Chip 14, 764–770 (2014).

    CAS  PubMed  Google Scholar 

  35. Gokce, S. K. et al. A multi-trap microfluidic chip enabling longitudinal studies of nerve regeneration in Caenorhabditis elegans. Sci. Rep. 7, 9837 (2017).

    PubMed  PubMed Central  Google Scholar 

  36. Rouse, T., Aubry, G., Cho, Y., Zimmer, M. & Lu, H. A programmable platform for sub-second multichemical dynamic stimulation and neuronal functional imaging in C. elegans. Lab. Chip 18, 505–513 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Casadevall i Solvas, X. et al. High-throughput age synchronisation of Caenorhabditis elegans. Chem. Commun. (Camb) 47, 9801–9803 (2011).

    CAS  Google Scholar 

  38. Cho, Y., Oakland, D. N., Lee, S. A., Schafer, W. R. & Lu, H. On-chip functional neuroimaging with mechanical stimulation in Caenorhabditis elegans larvae for studying development and neural circuits. Lab. Chip 18, 601–609 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Cho, Y. et al. Automated and controlled mechanical stimulation and functional imaging in vivo in C. elegans. Lab. Chip 17, 2609–2618 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Rahman, M. et al. NemaFlex: a microfluidics-based technology for standardized measurement of muscular strength of C. elegans. Lab. Chip 18, 2187–2201 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lockery, S. R. et al. A microfluidic device for whole-animal drug screening using electrophysiological measures in the nematode C. elegans. Lab. Chip 12, 2211–2220 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sulston, J. E. & Horvitz, H. R. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol. 56, 110–156 (1977).

    CAS  PubMed  Google Scholar 

  43. Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 (1983).

    CAS  PubMed  Google Scholar 

  44. Hall, D. H., Hartwieg, E. & Nguyen, K. C. Modern electron microscopy methods for C. elegans. Methods Cell. Biol. 107, 93–149 (2012).

    CAS  PubMed  Google Scholar 

  45. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. & Prasher, D. C. Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994).

    CAS  PubMed  Google Scholar 

  46. Chen, B. C. et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1257998 (2014).

    PubMed  PubMed Central  Google Scholar 

  47. Mace, D. L., Weisdepp, P., Gevirtzman, L., Boyle, T. & Waterston, R. H. A. High-fidelity cell lineage tracing method for obtaining systematic spatiotemporal gene expression patterns in Caenorhabditis elegans. G3 (Bethesda) 3, 851–863 (2013).

    Google Scholar 

  48. Wu, Y. et al. Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans. Proc. Natl Acad. Sci. U S A 108, 17708–17713 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wu, Y. et al. Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy. Nat. Biotechnol. 31, 1032–1038 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Rieckher, M. et al. A customized light sheet microscope to measure spatio-temporal protein dynamics in small model organisms. PLoS One 10, e0127869 (2015).

    PubMed  PubMed Central  Google Scholar 

  51. Liu, T. L. et al. Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms. Science 360, eaaq1392 (2018).

    PubMed  PubMed Central  Google Scholar 

  52. Schrodel, T., Prevedel, R., Aumayr, K., Zimmer, M. & Vaziri, A. Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light. Nat. Methods 10, 1013–1020 (2013).

    PubMed  Google Scholar 

  53. Prevedel, R. et al. Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy. Nat. Methods 11, 727–730 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Shaw, M., Elmi, M., Pawar, V. & Srinivasan, M. A. Investigation of mechanosensation in C. elegans using light field calcium imaging. Biomed. Opt. Express 7, 2877–2887 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Martin, C. et al. Line excitation array detection fluorescence microscopy at 0.8 million frames per second. Nat. Commun. 9, 4499 (2018).

    PubMed  PubMed Central  Google Scholar 

  56. Gao, L. et al. Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens. Cell 151, 1370–1385 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ingaramo, M. et al. Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue. Proc. Natl Acad. Sci. U S A 111, 5254–5259 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Qadota, H. et al. High-resolution imaging of muscle attachment structures in Caenorhabditis elegans. Cytoskeleton (Hoboken) 74, 426–442 (2017).

    CAS  Google Scholar 

  59. Vangindertael, J. et al. Super-resolution mapping of glutamate receptors in C. elegans by confocal correlated PALM. Sci. Rep. 5, 13532 (2015).

    PubMed  PubMed Central  Google Scholar 

  60. Husson, S.J., Costa, W.S., Schmitt, C. & Gottschalk, A. Keeping track of worm trackers. WormBook https://doi.org/10.1895/wormbook.1.156.1 (2013).

  61. McDiarmid, T. A., Yu, A. J. & Rankin, C. H. Beyond the response—high throughput behavioral analyses to link genome to phenome in Caenorhabditis elegans. Genes Brain Behav. 17, e12437 (2018).

    CAS  PubMed  Google Scholar 

  62. Churgin, M. A. & Fang-Yen, C. An imaging system for C. elegans behavior. Methods Mol. Biol. 1327, 199–207 (2015).

    CAS  PubMed  Google Scholar 

  63. Liu, Z., Tian, L., Liu, S. & Waller, L. Real-time brightfield, darkfield, and phase contrast imaging in a light-emitting diode array microscope. J. Biomed. Opt. 19, 106002 (2014).

    PubMed  Google Scholar 

  64. Yu, C. C., Raizen, D. M. & Fang-Yen, C. Multi-well imaging of development and behavior in Caenorhabditis elegans. J. Neurosci. Methods 223, 35–39 (2014).

    PubMed  Google Scholar 

  65. Alisch, T., Crall, J. D., Kao, A. B., Zucker, D. & de Bivort, B. L. MAPLE (modular automated platform for large-scale experiments), a robot for integrated organism-handling and phenotyping. Elife 7, e37166 (2018).

    PubMed  PubMed Central  Google Scholar 

  66. Leifer, A. M., Fang-Yen, C., Gershow, M., Alkema, M. J. & Samuel, A. D. Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans. Nat. Methods 8, 147–152 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Stirman, J. N. et al. Real-time multimodal optical control of neurons and muscles in freely behaving Caenorhabditis elegans. Nat. Methods 8, 153–158 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu, M., Sharma, A. K., Shaevitz, J. W. & Leifer, A. M. Temporal processing and context dependency in Caenorhabditis elegans response to mechanosensation. Elife 7, e36419 (2018).

    PubMed  PubMed Central  Google Scholar 

  69. Porto, D. A., Giblin, J., Zhao, Y. & Lu, H. Reverse-correlation analysis of the mechanosensation circuit and behavior in C. elegans reveals temporal and spatial encoding. Sci. Rep. 9, 5182 (2019).

    PubMed  PubMed Central  Google Scholar 

  70. Grys, B. T. et al. Machine learning and computer vision approaches for phenotypic profiling. J. Cell Biol. 216, 65–71 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wollmann, T., Erfle, H., Eils, R., Rohr, K. & Gunkel, M. Workflows for microscopy image analysis and cellular phenotyping. J. Biotechnol. 261, 70–75 (2017).

    CAS  PubMed  Google Scholar 

  72. Rueden, C. T. et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18, 529 (2017).

    PubMed  PubMed Central  Google Scholar 

  73. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS  PubMed  Google Scholar 

  74. McQuin, C. et al. CellProfiler 3.0: next-generation image processing for biology. PLoS Biol. 16, e2005970 (2018).

    PubMed  PubMed Central  Google Scholar 

  75. Wahlby, C. et al. An image analysis toolbox for high-throughput C. elegans assays. Nat. Methods 9, 714–716 (2012).

    PubMed  PubMed Central  Google Scholar 

  76. Jung, S. K., Aleman-Meza, B., Riepe, C. & Zhong, W. QuantWorm: a comprehensive software package for Caenorhabditis elegans phenotypic assays. PLoS One 9, e84830 (2014).

    PubMed  PubMed Central  Google Scholar 

  77. Labocha, M. K., Jung, S. K., Aleman-Meza, B., Liu, Z. & Zhong, W. WormGender—Open-source software for automatic Caenorhabditis elegans sex ratio measurement. PLoS One 10, e0139724 (2015).

    PubMed  PubMed Central  Google Scholar 

  78. Chen, L., Chan, L. L., Zhao, Z. & Yan, H. A novel cell nuclei segmentation method for 3D C. elegans embryonic time-lapse images. BMC Bioinformatics 14, 328 (2013).

    PubMed  PubMed Central  Google Scholar 

  79. Santella, A., Du, Z., Nowotschin, S., Hadjantonakis, A. K. & Bao, Z. A hybrid blob-slice model for accurate and efficient detection of fluorescence labeled nuclei in 3D. BMC Bioinformatics 11, 580 (2010).

    PubMed  PubMed Central  Google Scholar 

  80. Santella, A., Du, Z. & Bao, Z. A semi-local neighborhood-based framework for probabilistic cell lineage tracing. BMC Bioinformatics 15, 217 (2014).

    PubMed  PubMed Central  Google Scholar 

  81. Zichuan, L. et al. NucleiNet: A convolutional encoder-decoder network for bio-image denoising. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2017, 1986–1989 (2017).

    Google Scholar 

  82. Long, F., Peng, H., Liu, X., Kim, S. K. & Myers, E. A 3D digital atlas of C. elegans and its application to single-cell analyses. Nat. Methods 6, 667–672 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Qu, L. et al. Simultaneous recognition and segmentation of cells: application in C. elegans. Bioinformatics 27, 2895–2902 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Toyoshima, Y. et al. Accurate automatic detection of densely distributed cell nuclei in 3D space. PLoS Comput. Biol. 12, e1004970 (2016).

    PubMed  PubMed Central  Google Scholar 

  85. Nguyen, J. P., Linder, A. N., Plummer, G. S., Shaevitz, J. W. & Leifer, A. M. Automatically tracking neurons in a moving and deforming brain. PLoS Comput. Biol. 13, e1005517 (2017).

    PubMed  PubMed Central  Google Scholar 

  86. San-Miguel, A. et al. Deep phenotyping unveils hidden traits and genetic relations in subtle mutants. Nat. Commun. 7, 12990 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Peng, H., Ruan, Z., Atasoy, D. & Sternson, S. Automatic reconstruction of 3D neuron structures using a graph-augmented deformable model. Bioinformatics 26, i38–46 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Moore, B. T., Jordan, J. M. & Baugh, L. R. WormSizer: high-throughput analysis of nematode size and shape. PLoS One 8, e57142 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang, M. F. Z. & Fernandez-Gonzalez, R. (Machine-)learning to analyze in vivo microscopy: support vector machines. Biochim. Biophys. Acta Proteins Proteom. 1865, 1719–1727 (2017).

    CAS  PubMed  Google Scholar 

  90. White, A. G. et al. DevStaR: high-throughput quantification of C. elegans developmental stages. IEEE Trans. Med. Imaging 32, 1791–1803 (2013).

    PubMed  Google Scholar 

  91. Zhan, M. et al. Automated processing of imaging data through multi-tiered classification of biological structures illustrated using Caenorhabditis elegans. PLoS Comput. Biol. 11, e1004194 (2015).

    PubMed  PubMed Central  Google Scholar 

  92. Entchev, E. V. et al. A gene-expression-based neural code for food abundance that modulates lifespan. Elife 4, e06259 (2015).

    PubMed  PubMed Central  Google Scholar 

  93. Hakim, A. et al. WorMachine: machine learning-based phenotypic analysis tool for worms. BMC Biol. 16, 8 (2018).

    PubMed  PubMed Central  Google Scholar 

  94. Zacharias, A. L. & Murray, J. I. Combinatorial decoding of the invariant C. elegans embryonic lineage in space and time. Genesis 54, 182–197 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Fire, A. A four-dimensional digital image archiving system for cell lineage tracing and retrospective embryology. Comput. Appl. Biosci. 10, 443–447 (1994).

    CAS  PubMed  Google Scholar 

  96. Thomas, C., DeVries, P., Hardin, J. & White, J. Four-dimensional imaging: computer visualization of 3D movements in living specimens. Science 273, 603–607 (1996).

    CAS  PubMed  Google Scholar 

  97. Sonnichsen, B. et al. Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 434, 462–469 (2005).

    CAS  PubMed  Google Scholar 

  98. Gunsalus, K. C. et al. Predictive models of molecular machines involved in Caenorhabditis elegans early embryogenesis. Nature 436, 861–865 (2005).

    CAS  PubMed  Google Scholar 

  99. Bao, Z. et al. Automated cell lineage tracing in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 103, 2707–2712 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Dzyubachyk, O., Jelier, R., Lehner, B., Niessen, W. & Meijering, E. Model-based approach for tracking embryogenesis in Caenorhabditis elegans fluorescence microscopy data. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009, 5356–5359 (2009).

    Google Scholar 

  101. Giurumescu, C. A. et al. Quantitative semi-automated analysis of morphogenesis with single-cell resolution in complex embryos. Development 139, 4271–4279 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Hunt-Newbury, R. et al. High-throughput in vivo analysis of gene expression in Caenorhabditis elegans. PLoS Biol. 5, e237 (2007).

    PubMed  PubMed Central  Google Scholar 

  103. Murray, J. I. et al. Automated analysis of embryonic gene expression with cellular resolution in C. elegans. Nat. Methods 5, 703–709 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Murray, J. I. et al. Multidimensional regulation of gene expression in the C. elegans embryo. Genome Res. 22, 1282–1294 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Moore, J. L., Du, Z. & Bao, Z. Systematic quantification of developmental phenotypes at single-cell resolution during embryogenesis. Development 140, 3266–3274 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Boeck, M. E. et al. Specific roles for the GATA transcription factors end-1 and end-3 during C. elegans E-lineage development. Dev. Biol. 358, 345–355 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Du, Z. et al. The regulatory landscape of lineage differentiation in a metazoan embryo. Dev. Cell. 34, 592–607 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Du, Z., Santella, A., He, F., Tiongson, M. & Bao, Z. De novo inference of systems-level mechanistic models of development from live-imaging-based phenotype analysis. Cell 156, 359–372 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Ho, V. W. et al. Systems-level quantification of division timing reveals a common genetic architecture controlling asynchrony and fate asymmetry. Mol. Syst. Biol. 11, 814 (2015).

    PubMed  PubMed Central  Google Scholar 

  110. Krüger, A. V. et al. Comprehensive single cell-resolution analysis of the role of chromatin regulators in early C. elegans embryogenesis. Dev. Biol. 398, 153–162 (2015).

    PubMed  Google Scholar 

  111. Keil, W., Kutscher, L. M., Shaham, S. & Siggia, E. D. Long-term high-resolution imaging of developing C. elegans larvae with microfluidics. Dev. Cell. 40, 202–214 (2017).

    CAS  PubMed  Google Scholar 

  112. Crane, M. M., Chung, K. & Lu, H. Computer-enhanced high-throughput genetic screens of C. elegans in a microfluidic system. Lab. Chip 9, 38–40 (2009).

    CAS  PubMed  Google Scholar 

  113. Uno, M. & Nishida, E. Lifespan-regulating genes in C. elegans. NPJ. Aging Mech. Dis. 2, 16010 (2016).

    PubMed  PubMed Central  Google Scholar 

  114. Sutphin, G. L. & Kaeberlein, M. Measuring Caenorhabditis elegans life span on solid media. J/of Vis Exp. 12, e1152 (2009).

    Google Scholar 

  115. Mathew, M. D., Mathew, N. D. & Ebert, P. R. WormScan: a technique for high-throughput phenotypic analysis of Caenorhabditis elegans. PLoS One 7, e33483 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Stroustrup, N. et al. The Caenorhabditis elegans lifespan machine. Nat. Methods 10, 665–670 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Stroustrup, N. et al. The temporal scaling of Caenorhabditis elegans ageing. Nature 530, 103–107 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Rea, S. L., Wu, D., Cypser, J. R., Vaupel, J. W. & Johnson, T. E. A stress-sensitive reporter predicts longevity in isogenic populations of Caenorhabditis elegans. Nat. Genet. 37, 894–898 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhang, W. B. et al. Extended twilight among isogenic C. elegans causes a disproportionate scaling between lifespan and health. Cell Syst. 3, 333–345.e334 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Kapahi, P., Kaeberlein, M. & Hansen, M. Dietary restriction and lifespan: lessons from invertebrate models. Ageing Res. Rev. 39, 3–14 (2017).

    PubMed  Google Scholar 

  121. Lucanic, M. et al. Chemical activation of a food deprivation signal extends lifespan. Aging Cell 15, 832–841 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Hullinger, R. & Puglielli, L. Molecular and cellular aspects of age-related cognitive decline and Alzheimer’s disease. Behav. Brain Res. 322, 191–205 (2017).

    CAS  PubMed  Google Scholar 

  123. Arey, R. N. & Murphy, C. T. Conserved regulators of cognitive aging: from worms to humans. Behav. Brain Res. 322, 299–310 (2017).

    PubMed  Google Scholar 

  124. Bazopoulou, D., Chaudhury, A. R., Pantazis, A. & Chronis, N. An automated compound screening for anti-aging effects on the function of C. elegans sensory neurons. Sci. Rep. 7, 9403 (2017).

    PubMed  PubMed Central  Google Scholar 

  125. Markaki, M. & Tavernarakis, N. Modeling human diseases in Caenorhabditis elegans. Biotechnol. J. 5, 1261–1276 (2010).

    CAS  PubMed  Google Scholar 

  126. Gosai, S. J. et al. Automated high-content live animal drug screening using C. elegans expressing the aggregation prone serpin α1-antitrypsin Z. PLoS One 5, e15460 (2010).

    PubMed  PubMed Central  Google Scholar 

  127. O’Reilly, L. P. et al. A genome-wide RNAi screen identifies potential drug targets in a C. elegans model of α1-antitrypsin deficiency. Hum. Mol. Genet. 23, 5123–5132 (2014).

    PubMed  PubMed Central  Google Scholar 

  128. Morley, J. F., Brignull, H. R., Weyers, J. J. & Morimoto, R. I. The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 99, 10417–10422 (2002).

    PubMed  PubMed Central  Google Scholar 

  129. Mondal, S. et al. Large-scale microfluidics providing high-resolution and high-throughput screening of Caenorhabditis elegans poly-glutamine aggregation model. Nat. Commun. 7, 13023 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Samara, C. et al. Large-scale in vivo femtosecond laser neurosurgery screen reveals small-molecule enhancer of regeneration. Proc. Natl Acad. Sci. U S A 107, 18342–18347 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Mathew, M. D. et al. Using C. elegans forward and reverse genetics to identify new compounds with anthelmintic activity. PLoS Negl. Trop. Dis. 10, e0005058 (2016).

    PubMed  PubMed Central  Google Scholar 

  132. Partridge, F. A. et al. An automated high-throughput system for phenotypic screening of chemical libraries on C. elegans and parasitic nematodes. Int. J. Parasitol. Drugs Drug. Resist. 8, 8–21 (2018).

    PubMed  Google Scholar 

  133. Partridge, F. A. et al. Dihydrobenz[e][1,4]oxazepin-2(3H)-ones, a new anthelmintic chemotype immobilising whipworm and reducing infectivity. in vivo. PLoS Negl. Trop. Dis. 11, e0005359 (2017).

    CAS  PubMed  Google Scholar 

  134. Sykiotis, G. P. & Bohmann, D. Stress-activated cap’n’collar transcription factors in aging and human disease. Sci. Signal. 3, re3 (2010).

    PubMed  PubMed Central  Google Scholar 

  135. Leung, C. K., Deonarine, A., Strange, K. & Choe, K. P. High-throughput screening and biosensing with fluorescent C. elegans strains. J. Vis. Exp. 51, 2745 (2011).

    Google Scholar 

  136. Leung, C. K. et al. An ultra high-throughput, whole-animal screen for small molecule modulators of a specific genetic pathway in Caenorhabditis elegans. PLoS One 8, e62166 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Abraham, M. C., Lu, Y. & Shaham, S. A morphologically conserved nonapoptotic program promotes linker cell death in Caenorhabditis elegans. Dev. Cell 12, 73–86 (2007).

    CAS  PubMed  Google Scholar 

  138. Schwendeman, A. R. & Shaham, S. A high-throughput small molecule screen for C. elegans .inker cell death inhibitors. PLoS One 11, e0164595 (2016).

    PubMed  PubMed Central  Google Scholar 

  139. Pierce-Shimomura, J. T., Morse, T. M. & Lockery, S. R. The fundamental role of pirouettes in Caenorhabditis elegans chemotaxis. J. Neurosci. 19, 9557–9569 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Cronin, C. J. et al. An automated system for measuring parameters of nematode sinusoidal movement. BMC Genet. 6, 5 (2005).

    PubMed  PubMed Central  Google Scholar 

  141. Yemini, E., Jucikas, T., Grundy, L. J., Brown, A. E. & Schafer, W. R. A database of Caenorhabditis elegans behavioral phenotypes. Nat. Methods 10, 877–879 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Chronis, N., Zimmer, M. & Bargmann, C. I. Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans. Nat. Methods 4, 727–731 (2007).

    CAS  PubMed  Google Scholar 

  143. Feng, Z., Cronin, C. J., Wittig, J. H., Sternberg, P. W. & Schafer, W. R. An imaging system for standardized quantitative analysis of C. elegans behavior. BMC Bioinformatics 5, 115 (2004).

    PubMed  PubMed Central  Google Scholar 

  144. Swierczek, N. A., Giles, A. C., Rankin, C. H. & Kerr, R. A. High-throughput behavioral analysis in C. elegans. Nat. Methods 8, 592–598 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Itskovits, E., Levine, A., Cohen, E. & Zaslaver, A. A multi-animal tracker for studying complex behaviors. BMC Biol. 15, 29 (2017).

    PubMed  PubMed Central  Google Scholar 

  146. Restif, C. et al. CeleST: computer vision software for quantitative analysis of C. elegans swim behavior reveals novel features of locomotion. PLoS Comput. Biol. 10, e1003702 (2014).

    PubMed  PubMed Central  Google Scholar 

  147. Winter, P.B. et al. A network approach to discerning the identities of C. elegans in a free moving population. Sci. Rep. 6 (2016).

  148. Perez-Escudero, A., Vicente-Page, J., Hinz, R. C., Arganda, S. & de Polavieja, G. G. idTracker: tracking individuals in a group by automatic identification of unmarked animals. Nat. Methods 11, 743–748 (2014).

    CAS  PubMed  Google Scholar 

  149. Perni, M. et al. Massively parallel C. elegans tracking provides multi-dimensional fingerprints for phenotypic discovery. J. Neurosci. Methods 306, 57–67 (2018).

    PubMed  Google Scholar 

  150. Yu, H. et al. Systematic profiling of Caenorhabditis elegans locomotive behaviors reveals additional components in G-protein Gαq signaling. Proc. Natl Acad. Sci. USA 110, 11940–11945 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Ghosh, R., Mohammadi, A., Kruglyak, L. & Ryu, W. S. Multiparameter behavioral profiling reveals distinct thermal response regimes in Caenorhabditis elegans. BMC Biol 10, 85 (2012).

    PubMed  PubMed Central  Google Scholar 

  152. McGrath, P. T. et al. Quantitative mapping of a digenic behavioral trait implicates globin variation in C. elegans sensory behaviors. Neuron 61, 692–699 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Stephens, G. J., Johnson-Kerner, B., Bialek, W. & Ryu, W. S. Dimensionality and dynamics in the behavior of C. elegans. PLoS Comput. Biol. 4, e1000028 (2008).

    PubMed  PubMed Central  Google Scholar 

  154. Brown, A. E., Yemini, E. I., Grundy, L. J., Jucikas, T. & Schafer, W. R. A dictionary of behavioral motifs reveals clusters of genes affecting Caenorhabditis elegans locomotion. Proc. Natl Acad. Sci. USA 110, 791–796 (2013).

    CAS  PubMed  Google Scholar 

  155. Sengupta, P. The belly rules the nose: feeding state-dependent modulation of peripheral chemosensory responses. Curr. Opin. Neurobiol. 23, 68–75 (2013).

    CAS  PubMed  Google Scholar 

  156. Calhoun, A. J. et al. Neural mechanisms for evaluating environmental variability in Caenorhabditis elegans. Neuron 86, 428–441 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Calhoun, A. J., Chalasani, S. H. & Sharpee, T. O. Maximally informative foraging by Caenorhabditis elegans. Elife 3, e04220 (2014).

    PubMed Central  Google Scholar 

  158. Roberts, W. M. et al. A stochastic neuronal model predicts random search behaviors at multiple spatial scales in C. elegans. Elife 5, e12572 (2016).

    PubMed  PubMed Central  Google Scholar 

  159. McCloskey, R. J., Fouad, A. D., Churgin, M. A. & Fang-Yen, C. Food responsiveness regulates episodic behavioral states in Caenorhabditis elegans. J. Neurophysiol. 117, 1911–1934 (2017).

    PubMed  PubMed Central  Google Scholar 

  160. Churgin, M. A., McCloskey, R. J., Peters, E. & Fang-Yen, C. Antagonistic serotonergic and octopaminergic neural circuits mediate food-dependent locomotory behavior in Caenorhabditis elegans. J. Neurosci. 37, 7811–7823 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Stern, S., Kirst, C. & Bargmann, C. I. Neuromodulatory control of long-term behavioral patterns and individuality across development. Cell 171, 1649–1662.e10 (2017).

    CAS  PubMed  Google Scholar 

  162. Bargmann, C. I. Genetic and cellular analysis of behavior in C. elegans. Annu. Rev. Neurosci. 16, 47–71 (1993).

    CAS  PubMed  Google Scholar 

  163. Gordus, A., Pokala, N., Levy, S., Flavell, S. W. & Bargmann, C. I. Feedback from network states generates variability in a probabilistic olfactory circuit. Cell 161, 215–227 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Cho, Y., Zhao, C. L. & Lu, H. Trends in high-throughput and functional neuroimaging in Caenorhabditis elegans. Wiley Interdiscip. Rev. Syst. Biol. Med. 9, e1376 (2017).

    Google Scholar 

  165. Kato, S. et al. Global brain dynamics embed the motor command sequence of Caenorhabditis elegans. Cell 163, 656–669 (2015).

    CAS  PubMed  Google Scholar 

  166. Venkatachalam, V. et al. Pan-neuronal imaging in roaming Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 113, E1082–1088 (2016).

    CAS  PubMed  Google Scholar 

  167. Nguyen, J. P. et al. Whole-brain calcium imaging with cellular resolution in freely behaving Caenorhabditis elegans. Proc Natl Acad. Sci. U S A 113, E1074–1081 (2016).

    CAS  PubMed  Google Scholar 

  168. Nichols, A. L. A., Eichler, T., Latham, R. & Zimmer, M. A global brain state underlies C. elegans sleep behavior. Science 356, eaam6851 (2017).

    PubMed  Google Scholar 

  169. Eyer, K. et al. Single-cell deep phenotyping of IgG-secreting cells for high-resolution immune monitoring. Nat. Biotechnol. 35, 977–982 (2017).

    CAS  PubMed  Google Scholar 

  170. Crall, J. D. et al. Neonicotinoid exposure disrupts bumblebee nest behavior, social networks, and thermoregulation. Science 362, 683–686 (2018).

    CAS  PubMed  Google Scholar 

  171. Allalou, A., Wu, Y., Ghannad-Rezaie, M., Eimon, P. M. & Yanik, M. F. Automated deep-phenotyping of the vertebrate brain. Elife 6, e23379 (2017).

    PubMed  PubMed Central  Google Scholar 

  172. Cheng, K. C., Xin, X., Clark, D. P. & La Riviere, P. Whole-animal imaging, gene function, and the Zebrafish phenome project. Curr. Opin. Genet. Dev. 21, 620–629 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Hur, M. et al. MicroCT-based phenomics in the zebrafish skeleton reveals virtues of deep phenotyping in a distributed organ system. Elife 6, e26014 (2017).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K.E. Bates, D.A. Porto and T. Rouse for their suggestions on relevant literature, and the US National Institutes of Health (grants AG056436, DC015652, NS096581, GM088333, EB021676, EB020424 and GM10896) and National Science Foundation (grants 1707401 and 1764406) for funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, D.S., Xu, N. & Lu, H. Digging deeper: methodologies for high-content phenotyping in Caenorhabditis elegans. Lab Anim 48, 207–216 (2019). https://doi.org/10.1038/s41684-019-0326-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41684-019-0326-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing