Abstract
2D homonuclear NMR spectroscopy is an essential technique to characterize small and large molecules, such as organic compounds, metabolites, and biomacromolecules at atomic resolution. However, for complex samples 2D homonuclear spectra display poor resolution, making spectral assignment very cumbersome. Here, we propose a new method that exploits the differential T_{2}* relaxation times of individual resonances and resolves the 2D NMR peaks into pseudo3D spectra, where time is the 3^{rd} dimension. T_{2}* weIghted DEconvolution or TIDE analyzes individual free induction decays (FIDs) and dissects them into subFIDs that are transformed into pseudo3D spectra combining Fourier transformation and covariance NMR. TIDE achieves higher resolution and sensitivity for NMR spectra than classical covariance NMR reducing offsetdependent artifacts. We demonstrate the performance of TIDE for magic angle spinning (MAS) [^{13}C,^{13}C]DARR NMR spectra of single and multispan membrane proteins embedded in lipid bilayers. Since TIDE is applicable to all type of homonuclear correlation experiments for liquid and solid samples, we anticipate that it will be a general method for processing NMR data of biomacromolecules, complex mixtures of metabolites as well as material samples.
Introduction
In classical multidimensional NMR spectroscopy, the free induction decay (FID) is recorded as complex timedomain signals and converted into frequencydomain spectra using Fourier transform (FT)^{1,2,3}. First introduced by Jeener^{2} and Ernst^{3}, 2D NMR spectroscopy remains one of the most widely used techniques to analyze small and large molecules at atomic resolution both for solution and solidstate NMR (ssNMR). However, the complexity of NMR spectra often calls for advanced processing techniques such as linear prediction and maximum entropy reconstruction to enhance the spectral quality, i.e., resolution and sensitivity^{4,5,6}. In 2004, Bruschweiler and Zhang introduced covariance NMR^{7,8} as a way to obtain higher quality of homonuclear correlation spectra of small molecules and metabolites. In these past years, covariance NMR has also been applied to homonuclear 2D, 3D, and 4D solution^{9,10} and ssNMR spectra of large proteins^{11,12}. Takegoshi and coworkers implemented covariance NMR for heteronuclear correlations experiments^{13}, widening the number of applications for this powerful technique. Since it entails only the real part of the FID in the indirect dimension, covariance NMR reduces the total experimental time over classical FT by 50%. Although covariance NMR increases sensitivity of 2D homo and heterocorrelation spectra, it falls short to improve the resolution of crowded spectra.
Here we present a new method that further enhances simultaneously both spectral resolution and sensitivity of 2D NMR data sets. T_{2}* weIghted Deconvolution (TIDE) separates NMR peaks depending on their intrinsic transverse relaxation times (T_{2}*). TIDEprocessed spectra consist of two chemical shift dimensions resolved as a function of the time increments according to their T_{2}* in a pseudo3D mode. We demonstrate the performance of TIDE for magic angle spinning (MAS) [^{13}C,^{13}C]DARR^{14} spectra of single and multiplepass membrane proteins. Using TIDE, we achieved partial or complete separation of overlapped resonances in the spectra of these membrane proteins, improving dramatically both resolution and sensitivity with respect to the classical FT and covariance NMR.
Results
Theory of the TIDE method
In a standard 2D FTNMR experiment, the time domain signals, S (t_{1}, t_{2}), are transformed into frequencydomain, S (ω_{1}, ω_{2}), using FT for both dimensions. For covariance NMR (Fig. S1), the timedomain signals, S (t_{1}, t_{2}), are first Fourier transformed along the direct dimension t_{2}, obtaining S (t_{1}, ω_{2}). Subsequently, the covariance or crosscorrelation spectrum is calculated from the t_{1}encoded 1D spectra S (t_{1}, ω_{2}) using:
where i and j represent row and column index of the covariance matrix, respectively, k is the index of the FIDs in the t_{1} dimension, N_{1} is the total number of time points in the indirect dimension and \(\langle {\rm{S}}({\rm{i}})\rangle =1/{{\rm{N}}}_{1}\sum _{k\,}{\rm{S}}(k,{\rm{i}})\) is the mean of i^{th} column vector of S. The cross correlation spectrum (R_{ij}) is evaluated using \({R}_{{\rm{ij}}}={C}_{ij}/\sqrt{{C}_{ii}.{C}_{jj}}\).
For TIDE (Fig. 1), after the first FT in the t_{2} dimension, the t_{1} FIDs, S [t_{1}(1 to N_{1}), ω_{2}], are dissected into a series of n subFIDs (Fig. S2):
where N is number of t_{1} points in each sliced FID and N + n − 1 = N_{1}, which indicates the total number of t_{1} points. The dissection of the initial FID into subFIDs separates the signal of shortlived resonances. In fact, as subFID index(i) increases, the relative amplitude for the longlived signals increases, while the shortlived coherences die off. Subsequently, the S_{i} series of subFIDs are transformed into frequency domain using covariance NMR. Note that if we used FT in this step, which relies on initial phases of the signals in the t_{1} dimension, we would introduce firstorder phase distortions in the spectra resulting from the missing time points and dwell time in the subFIDs. In contrast, we opted for covariance transformation, which avoids phase distortions. The 2D covariance spectrum C_{i} (ω_{1}, ω_{2}) is calculated for each subFID using Eq. 1. The pseudo3D TIDE spectrum is generated by performing a Gaussian averaging over all the C_{i} (ω_{1}, ω_{2}) spectra:
where p indicates the plane number in the TIDE pseudo 3^{rd} dimension and G is the Gaussian distribution defined over the covariance spectra indices, and σ^{2} is the variance:
Note that, even though we are dividing each FID in the t_{1} dimension to create a series of subFIDs, the final TIDE spectrum contains all the points for each FIDs that are linked via Gaussian averaging.
The Gaussian averaging links all the Covariance spectra generated from the subFIDs. In addition, the Gaussian averaging reduces the frequency dependent artifacts in the spectra and hence improves the quantitative nature of the peaks. The variance dictates the width of the Gaussian function and is typically set to 10% of the total number of the subFID Covariance (Ci). σ^{2} is treated as a variable by the algorithm and will vary based on the size of indirect time points. In order to demonstrate the impact of Gaussian averaging, we evaluated the phase and frequency responses of covariance of sine waves. Varying the frequency of the sine wave imparts a covariancefrequency oscillation (Fig. S3A). The amplitude of the oscillation is highest near zero frequency and the oscillating pattern repeats itself every integer multiple of the Nyquist frequency. Changing the phase of the sine wave creates a periodic covariancephase oscillation as shown in Fig. S3B. The Gaussian averaging over this phase oscillation reduces the covariancefrequency oscillation improving the frequency response. A detailed stepwise procedure for TIDE processing is explained in Supporting Information.
TIDE increases both resolution and sensitivity of 2D homonuclear correlation spectra
To demonstrate the advantages of TIDE in terms of sensitivity, we tested its performance on a series of [^{13}C,^{13}C]DARR experiments carried out on a U^{13}C, ^{15}N labeled NacetylValLeu (NAVL) dipeptide recorded with a mixing time of 10 ms and different signaltonoise (S/N) ratios, which were obtained varying the angle (θ) of the initial excitation pulse on the ^{1}H channel (Fig. S7). The highest S/N ratio was obtained for θ = 90° and the peak intensities were normalized to 100%. The spectra obtained with θ = 5°, 2°, and 1° gave relative sensitivities of 8.5, 3.5, and 1.8%, respectively (Fig. S9A). The 2D spectra were processed using TIDE and FT. A comparison of the processed spectra is reported in Fig. S9B and C. As expected, the crosspeaks of the FT spectra follow closely the S/N ratio and become almost undetectable for the experiment acquired with θ = 1°. In contrast, the TIDE spectrum shows cross correlations even at low S/N ratio (~5). For S/N ratios lower than 5, TIDE introduces artifacts as shown in the Cα region of the spectrum. The latter becomes a significant problem when the experiments are carried out with small number of time increments in the indirect dimension.
We first tested the performance of TIDE over the original covariance NMR. To this extent, we analyzed the frequency response of the peak intensities using two simulated FIDs of 256 points, consisting of a single frequency resonance with the same signal and noise amplitudes, but different noise profiles (Fig. S4A). The first FID, FID1, represents the decay of a single resonance, R_{a}, and the second, FID2, with different noise profile is the decay of R_{a}′. We calculated the correlation coefficients between the two FIDs for a range of frequencies and generated a response plot (Fig. S4B). This response plot shows that TIDE does not introduce any frequencydependent artifacts in the transformed spectra. We then repeated the same simulations for R_{a} and R_{a}′ with a third frequency, R_{b}, summed to FID1 (Fig. S5). The covariance calculation between FID1 and FID2 gives crosspeaks at frequencies ω_{2} and ω_{2}′ for the direct dimension. If R_{b} is present in FID1, the correlation coefficient between the two FIDs is reduced (Fig. S5C). The decrease of the correlation coefficient between the two FIDs is modulated by the lifetime of R_{b} (T_{2b}^{*}). For T_{2b}^{*} ≪ T_{2a}^{*}, i.e., R_{b} decays rapidly, the correlation coefficient increases. For instance, if T_{2a}^{*} = 5 ms and T_{2b}^{*} = 1 ms, the correlation coefficient increases up to 7% (Fig. S4C). A similar scenario can be envisioned for T_{2b}^{*} ≫ T_{2a}^{*}. The resolution gain achievable with TIDE is even more apparent with a 2D homonuclear correlated data set. As an example, we simulated a shortlived resonance with T_{2} = τ overlapping with two correlated slowly relaxing resonances (T_{2} = 2τ) (Fig. S6). In the FT spectrum, it is possible to observe only one unresolved resonance. Analogously, in the first few planes of the pseudo3D TIDE spectrum, only one unresolved peak is observed. However, by analyzing the following planes (Movie 1 . avi, Supporting Information) the lowintensity resonances appear (30^{th} plane) and are fully resolved and more intense in the 90^{th} plane (Fig. S6). Taken together, these simulations show that covariance NMR and TIDE give almost identical results for a spectrum with a single frequency, whereas TIDE outperforms covariance NMR when additional resonances are present in the FID.
Application of TIDE to membrane proteins
The performance of TIDE can be appreciated for more heterogeneous systems such as membrane proteins embedded in lipid membranes. To illustrate this point, we analyzed the timefrequency distribution of an experimental FID using reduced interference distribution (RID, http://case.caltech.edu/tfr/). RID is a timefrequency analysis technique that defines the frequency content of timedependent signals. Fig. S8A displays the RID output for the first FID of the [^{13}C,^{13}C]DARR spectrum of the singlepass membrane protein phospholamban (PLN)^{15} embedded in 1,2dimyristoylsnglycero3phosphocholine (DMPC) lipid bilayers. The FID of PLN can be shown as a timeresolved pseudo2D, where the acquisition time constitutes the first dimension and the 1D spectra the second dimension (Fig. S8A). This pseudo2D or timeresolved 1D spectrum was obtained by removing iteratively the first time point of the FID and plotting the absolute values of the corresponding FT. The pseudo2D illustrate the differential T_{2}* of each individual ^{13}C resonance.
Due to dilute sample conditions and primary sequence redundancies, the [^{13}C,^{13}C] DARR spectra of membrane proteins such as PLN suffer of poor sensitivity, and resolution. We applied TIDE to the [^{13}C,^{13}C] DARR spectra of two singlepass membrane proteins, phospholamban (PLN)^{16} and sarcolipin (SLN)^{17} as well as to SatP, a sixtransmembrane acetatesuccinate permease from E. coli^{18,19,20}. The DARR spectra of PLN and SLN processed with FT are taken from our previous work^{16,17,21}.
The comparison of U^{13}C,^{15}N SLN [^{13}C,^{13}C] DARR spectra processed with FT, covariance NMR, and TIDE is shown in Fig. 2. Due to the severe overlap or missing peaks, the resonance assignment of SLN has been challenging in spite of its small size and required several selectively labeled samples^{22}. With respect to FT, covariance NMR spectra display significantly higher S/N ratio and several peaks that were weak or missing in the classical processing are more intense. However, the magnetic equivalence of several resonances results in a significant spectral overlap. In addition, both FT and covariance NMR spectra display a marked broad base of the resonances, which is probably due to inhomogeneities and/or incomplete averaging of chemical shift anisotropy (CSA) and dipolar couplings (DC), which causes major resolution losses in the DARR spectra. In contrast, the TIDE planes (plane 1 and plane 38) reported in Fig. 2A show a significant enhancement of the S/N ratio and a concomitant higher resolution of resonances in the spectrum. CSA and DC broadening effects are ameliorated in the TIDE processing as shown in the t_{1}resolved planes, which enabled us to obtain wellseparated peaks (Fig. 2B). Remarkably, the high resolution achieved in plane 38 of the pseudo3D, made it possible to assign most of the SLN resonances. We also tested the performance of TIDE for DARR spectra of a 52 amino acid singlepass membrane protein, PLN, and its diseaselinked mutants, PLN^{R9C} ^{23} and PLN^{R25C} ^{24} (Fig. S10). In lipid membranes, the cytoplasmic region of PLN (residues 1–25) undergoes a slow conformational exchange between an ordered T state (membrane bound), and a sparsely populated R state (membrane detached)^{22}. The DARR spectra show both populations. Specifically, in the monomeric form of PLN (PLN^{AFA}) the T and R state populations were estimated to be 97 and 3%, respectively. For the PLN^{R9C} mutant, the cytoplasmic region is predominantly in the membranebound state, whereas the PLN^{R25C} populates mostly the Rstate^{16}. The DARR experiment uses a cross polarization element to transfer the nuclear polarization and detects the more rigid, residues membranebound T state. In Fig. 3, we show portions of DARR spectra featuring Ser and Thr resonances that we use to estimate the extent of T state. The resonances of these residues are present for both PLN^{AFA} and PLN^{R9C}, but are essentially undetectable in the FT spectra of PLN^{R25C} as the T state is sparsely populated. In contrast, TIDE processing enabled us to visualize even the small population of the T state for PLN^{R25C}. A detailed discussion of PLN^{AFA}, PLN^{R9C} and PLN^{R25C} can be found in our previous article by Nelson et al.^{16}. The improved sensitivity and resolution are also apparent for DARR spectra used to detect interhelical DC between the asymmetrically labeled protomers of the wildtype pentameric PLN^{21,25}. The [^{13}C,^{13}C] DARR spectrum was recorded using 200 ms mixing time to detect longrange DC to define the Ile/Leu zipper holding together the pentameric assembly (Fig. S11). The experiment was acquired with only 50 points in the indirect dimension, which are at the limit of TIDE applicability. Nevertheless, the first plane of TIDE outperforms the FT spectrum as shown in both the 2D and 1D cross sections and we were able to resolve previously overlapped interprotomer correlations. Finally, we compared the different processing methods on the [^{13}C,^{13}C]DARR experiments carried out on the sixtransmembrane domain SatP (Fig. S12)^{18}. The TIDE processed spectra are significantly more intense and resolved than the corresponding FT spectra, in which several correlation peaks are obscured by fast relaxing resonances.
Discussion
Since the incipit of NMR spectroscopy^{26,27,28}, scientists have continued their quest for improving spectral resolution. A traditional way to improve spectral resolution is to add new dimensions, separating the overlapped signals based on their magnetic properties such as chemical shifts, J couplings, dipolar couplings etc. With our new method, we utilized a distinct feature of the FIDs, i.e., the differential T_{2}* of the individual spins. This leads to a nonuniform distribution of nuclear resonance frequencies that is apparent for heterogeneous systems such as mixtures of metabolites, materials or large biomacromolecules. Campbell et al.^{29} exploited this phenomenon to filter out unwanted signals from 1D NMR spectra. Similar strategies were used for ligand binding studies^{30}, small molecules spinlattice relaxation measurements^{31}, diffusionedited drug binding^{32} and eliminate the signals of large macromolecules from spectra of metabolites^{33}. Ding et al.^{34} performed T_{2} based filtering of multiplequantum spectra in solids with strong dipolar interactions. This was achieved by adding a delay before the acquisition time. This approach enhances the resolution of ^{1}H spectra, but decreases the sensitivity and causes phase and baseline distortions in the second dimension. In contrast to these methods, TIDE utilizes differential T_{2}* of the spin systems to spectrally separate them and assign individual resonances. TIDE dissects each FID into subFIDs separating fast from slow relaxing spin systems and then reconstructs the entire spectrum into a pseudo3D combining both FT and covariance NMR. In this way, TIDE extends the dimensionality of the 2D homonuclear correlation spectroscopy by retaining timefrequency information encoded in the FID. The pseudothird dimension enables one to resolve overlapping peaks according to the transverse relaxation properties. Remarkably, TIDE reduces the offset dependent artifacts significantly, and hence, the first plane of TIDE is superior to the original covariance spectra. As for the recent modification of covariance NMR^{35}, the peak intensities obtained with TIDE are not modulated by the carrier frequency. Therefore, TIDEprocessed DARR crosspeaks can be binned and converted into ranges of distance constraints for structure calculations. Importantly, TIDE also preserves the original advantages of covariance NMR^{7}. In fact, it can be applied to data sets acquired with standard pulse sequences without modifications of experimental parameters and requires only real points in the indirect dimension, reducing the experimental time by 50%. Another benefit shared by covariance NMR and TIDE is the improved resolution even in the presence of asymmetry in the peak intensities with respect to the diagonal. It has been shown that multidimensional solidstate NMR correlation spectra are inherently asymmetric, due to crosspolarization spin dynamics and complex motions^{36}. Nonetheless, covariance processing improved dramatically the quality of the spectra of microcrystalline protein preparations^{12} and large membrane proteins^{37}. A similar result was obtained by Lin and Opella, who used covariance processing for solidstate NMR spectra of oriented membrane protein samples^{11}. In this latter case, the lower intensity of the signals and the asymmetry of the peaks due to spin diffusion further jeopardize the quality of the spectra. Nonetheless, covariance processing offered a higher quality spectra. As for covariance NMR, TIDE processed spectra show an increase in both resolution and signaltonoise ratio. The most remarkable application is the observation of minor population in the DARR spectra of PLN mutants, which were completely missed in our earlier 2D FT processing^{16}. Nonetheless, the most significant advancement accomplished by TIDE is the introduction of the pseudothird dimension, which further separates the resonances of highly overlapped, heterogeneous systems such as membrane proteins. We believe that TIDE will make it possible to simplify the NMR spectra of these systems as well as other heterogenous samples such as polymers, complex mixtures of metabolites as well as other materials.
Material and Methods
Sample preparation
PLN, SLN, and SatP were expressed recombinantly in E. coli bacteria. For PLN and SLN, we used a maltose binding protein as a fusion. The complete expression and purification protocols were reported previously^{38}. For the succinateacetate permease (SatP), we used a SUMO fusion protein to enable the purification. The complete protocol for SatP purification was reported by Gopinath et al.^{39}. The NAVL sample was synthesized and crystallized according to the preparations reported by Tenkortenaar et al.^{40}.
NMR spectroscopy
NMR experiments were performed on 600 and 700 MHz Agilent solidstate spectrometers as well as 700 MHz Bruker solidstate spectrometer. For the MAS experiments about 1.5 mg of SLN, 2 mg of PLN and 8 mg SatP were reconstituted into 1,2dimyristoylsnglycero3phosphocholine (DMPC, Avanti Polar Lipids) and packed into a 3.2 mm rotor as reported in our previous protocols^{17,22}. The temperature of the samples was held constant at 25 °C. The pulse sequence for recording 2D [^{13}C,^{13}C]DARR experiment is shown in Fig. S7. All the critical parameters for the NMR experiments are given in Table S1.
TIDE algorithm
For TIDE, a 2D FID time signal [S(t_{1}, t_{2})], where t_{1} and t_{2} specifies indirect and direct time points, is treated as a complex matrix of size N_{1} × N_{2}. The protocol consists of four different steps.
Step 1: The direct dimension of S(t_{1}, t_{2}) is Fourier transformed after appropriate window apodization. This step generates N_{1} number of 1D spectra S(t_{1}, ω_{2}). For the TIDEprocessed spectra reported in the manuscript, we used an exponential apodization function with a line broadening of 50 Hz. In addition, zerofilling is applied in the direct dimension, with 2–4 k as the total time points.
Step 2: The FIDs in the t_{1} dimension are sliced into a series of subFIDs of length N, where N < N_{1} (Fig. S2). Typically, N is set to half of the total length of FID in the t_{1} dimension and can be optimized based on the spectral sensitivity and resonance life times. For the first set of subFID (S_{1}), the t_{1} dimension ranges from 1 to N and for the i^{th} set of subFID (S_{i}) from i to (N + i − 1),
The first subFID, S_{1}, contains the initial points of the parent FID, corresponding to the signals for all the resonances. As i increases, the relative intensity of longlived resonances in the S_{i} increases; hence, it is possible to obtain a new dimension ‘i’ that encodes for the timefrequency information of the FID. The change in the relative intensities is represented in Fig. S13. As shown, two resonances (a, b) decay with transverse relaxation rates T_{2}^{a} and T_{2}^{b} respectively. When T_{2}^{a} > T_{2}^{b}, the difference in the intensity of the magnetization initially increases, then decays. The rate of decay is faster for fast relaxing resonances.
Step 3: At this stage, the algorithm calculates the covariance for each subFID, S_{i}:
Unlike Fourier transformation, the covariance operation does not introduce any first order phase artifacts in the spectrum. Note that the covariance operation here can be replaced with the calculation of Pearson correlation coefficients to generate a TIDE version of the cross correlation spectra^{7}.
Step 4: At this point, Step 3 of the protocol is repeated from i = 1 to n, generating a sequence of covariance spectra {C_{i}} and the final TIDEtransformed spectrum is obtained by performing a Gaussian averaging of {C_{i}} matrices:
where G_{i}(p), is the Gaussian function and σ^{2} is the variance. Since the first point of the i covariance spectra, {C_{i}} is different, a Gaussian averaging of the {C_{i}} is necessary to avoid covariance oscillations in the frequency response. The importance of this operation is illustrated in Fig. S3. Note that phase averaging reduces the offset dependent artifacts in the TIDEprocessed spectra hence quantification is improved in the first plane of TIDE over original Covariance spectrum. Note that Gaussian averaging can be replaced by a Lorentzian function or other any other apodization functions. In general, the width of averaging function needs to be selected according to the lifetime of the resonances and number of time points recorded in the indirect dimension. All the TIDE processing scripts are written in MATLAB^{®} (R2017a). The scripts are compatible with FID files generated by NMRPipe^{41}. The total processing time for generating TIDE plane varies between 5 seconds to 1 min depending on the data size. In addition, the current scripts allow one to process selective spectral regions, reducing the total computational time. Average time for TIDE processing presented in this manuscript is 10 sec. using an Intel Core i7 processor and MATLAB^{®} R2017a. The output of TIDE processing is in the format of MATLAB figure, PDF, or jpg.
Data Availability
All the scripts and an example data set are provided on the following web site: http://veglia.chem.umn.edu/softwaredownloads/.
References
 1.
Ernst, R.R., Bodenhausen, G. & Wokaun, A. Principles of nuclear magnetic resonance in one and two dimensions, xxiv, 610 p (Clarendon Press, Oxford, 1987).
 2.
Jeener, J. Ampere Summer School. In Ampere Summer School (Basko Polje, Yugoslavia, 1971).
 3.
Aue, W. P., Bartholdi, E. & Ernst, R. R. Two‐dimensional spectroscopy. Application to nuclear magnetic resonance. The Journal of Chemical Physics 64, 2229–2246 (1976).
 4.
Sibisi, S., Skilling, J., Brereton, R. G., Laue, E. D. & Staunton, J. MaximumEntropy SignalProcessing in Practical NmrSpectroscopy. Nature 311, 446–447 (1984).
 5.
Laue, E. D., Skilling, J., Staunton, J., Sibisi, S. & Brereton, R. G. MaximumEntropy Method in Nuclear MagneticResonance Spectroscopy. Journal of Magnetic Resonance 62, 437–452 (1985).
 6.
Mulleti, S. et al. SuperResolved Nuclear Magnetic Resonance Spectroscopy. Sci Rep 7, 9651 (2017).
 7.
Bruschweiler, R. & Zhang, F. L. Covariance nuclear magnetic resonance spectroscopy. Journal of Chemical Physics 120, 5253–5260 (2004).
 8.
Bruschweiler, R. Theory of covariance nuclear magnetic resonance spectroscopy. Journal of Chemical Physics 121, 409–414 (2004).
 9.
Harden, B. J., Frueh, D. P. & Covariance, N. M. R. Processing and Analysis for Protein Assignment. Methods Mol Biol 1688, 353–373 (2018).
 10.
Snyder, D. A., Zhang, F. & Bruschweiler, R. Covariance NMR in higher dimensions: application to 4D NOESY spectroscopy of proteins. J Biomol NMR 39, 165–75 (2007).
 11.
Lin, E. C. & Opella, S. J. Covariance spectroscopy in highresolution multidimensional solidstate NMR. J Magn Reson 239, 57–60 (2014).
 12.
Weingarth, M., Tekely, P., Bruschweiler, R. & Bodenhausen, G. Improving the quality of 2D solidstate NMR spectra of microcrystalline proteins by covariance analysis. Chem Commun (Camb) 46, 952–4 (2010).
 13.
Takeda, K., Kusakabe, Y., Noda, Y., Fukuchi, M. & Takegoshi, K. Homo and heteronuclear twodimensional covariance solidstate NMR spectroscopy with a dualreceiver system. Phys Chem Chem Phys 14, 9715–21 (2012).
 14.
Takegoshi, K., Nakamura, S. & Terao, T. C13H1 dipolarassisted rotational resonance in magicangle spinning NMR. Chemical Physics Letters 344, 631–637 (2001).
 15.
Traaseth, N. J. et al. Structural and dynamic basis of phospholamban and sarcolipin inhibition of Ca(2+)ATPase. Biochemistry 47, 3–13 (2008).
 16.
Nelson, S. E. D. et al. Effects of the Arg9Cys and Arg25Cys mutations on phospholamban’s conformational equilibrium in membrane bilayers. Biochim Biophys Acta 1860, 1335–1341 (2018).
 17.
Mote, K. R., Gopinath, T. & Veglia, G. Determination of structural topology of a membrane protein in lipid bilayers using polarization optimized experiments (POE) for static and MAS solid state NMR spectroscopy. Journal of Biomolecular Nmr 57, 91–102 (2013).
 18.
SaPessoa, J. et al. SATP (YaaH), a succinateacetate transporter protein in Escherichia coli. Biochemical Journal 454, 585–595 (2013).
 19.
Qiu, B. et al. Succinateacetate permease from Citrobacter koseri is an anion channel that unidirectionally translocates acetate. Cell Res 28, 644–654 (2018).
 20.
Sun, P. et al. Crystal structure of the bacterial acetate transporter SatP reveals that it forms a hexameric channel. J Biol Chem (2018).
 21.
Verardi, R., Shi, L., Traaseth, N. J., Walsh, N. & Veglia, G. Structural topology of phospholamban pentamer in lipid bilayers by a hybrid solution and solidstate NMR method. Proceedings of the National Academy of Sciences of the United States of America 108, 9101–9106 (2011).
 22.
Gustavsson, M., Traaseth, N. J. & Veglia, G. Probing ground and excited states of phospholamban in model and native lipid membranes by magic angle spinning NMR spectroscopy. Biochim Biophys Acta 1818, 146–53 (2012).
 23.
Schmitt, J. P. et al. Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban. Science 299, 1410–3 (2003).
 24.
Liu, G. S. et al. A novel human R25Cphospholamban mutation is associated with superinhibition of calcium cycling and ventricular arrhythmia. Cardiovascular Research 107, 164–174 (2015).
 25.
Traaseth, N. J., Verardi, R. & Veglia, G. Asymmetric methyl group labeling as a probe of membrane protein homooligomers by NMR spectroscopy. J Am Chem Soc 130, 2400–1 (2008).
 26.
Bloch, F. Nuclear Induction. Physical Review 70, 460–474 (1946).
 27.
Bloch, F., Hansen, W. W. & Packard, M. Nuclear Induction. Physical Review 69, 127–127 (1946).
 28.
Purcell, E. M., Torrey, H. C. & Pound, R. V. Resonance Absorption by Nuclear Magnetic Moments in a Solid. Physical Review 69, 37–38 (1946).
 29.
Campbell, I. D., Dobson, C. M., Williams, R. J. & Wright, P. E. Pulse methods for the simplification of protein NMR spectra. FEBS Lett 57, 96–9 (1975).
 30.
Hajduk, P. J., Olejniczak, E. T. & Fesik, S. W. Onedimensional relaxation and diffusionedited NMR methods for screening compounds that bind to macromolecules. Journal of the American Chemical Society 119, 12257–12261 (1997).
 31.
Rabenstein, D. L., Nakashima, T. & Bigam, G. A pulse sequence for the measurement of spinlattice relaxation times of small molecules in protein solutions. Journal of Magnetic Resonance (1969) 34, 669–674 (1979).
 32.
Peng, J. W., Lepre, C. A., Fejzo, J., AbdulManan, N. & Moore, J. M. Nuclear magnetic resonancebased approaches for lead generation in drug discovery. Nuclear Magnetic Resonance of Biologica. Macromolecules, Pt A 338, 202–230 (2001).
 33.
Tang, H., Wang, Y., Nicholson, J. K. & Lindon, J. C. Use of relaxationedited onedimensional and two dimensional nuclear magnetic resonance spectroscopy to improve detection of small metabolites in blood plasma. Anal Biochem 325, 260–72 (2004).
 34.
Ding, S. W. & McDowell, C. A. Highresolution H1 multiplequantum spectra in solids with strong dipolar interactions. Journal of Magnetic Resonance Series A 120, 261–263 (1996).
 35.
Takeda, K., Kobayashi, Y., Noda, Y. & Takegoshi, K. Innerproduct NMR spectroscopy: A variant of covariance NMR spectroscopy. J Magn Reson 297, 146–151 (2018).
 36.
Caldarelli, S. & Emsley, L. Intrinsic asymmetry in multidimensional solidstate NMR correlation spectra. J Magn Reson 130, 233–7 (1998).
 37.
Frericks, H. L., Zhou, D. H., Yap, L. L., Gennis, R. B. & Rienstra, C. M. Magicangle spinning solidstate NMR of a 144 kDa membrane protein complex: E. coli cytochrome bo3 oxidase. J Biomol NMR 36, 55–71 (2006).
 38.
Buck, B. et al. Overexpression, purification, and characterization of recombinant CaATPase regulators for highresolution solution and solidstate NMR studies. Protein Expr Purif 30, 253–61 (2003).
 39.
Gopinath, T., Wang, S., Lee, J., Aihara, H. & Veglia, G. Hybridization of TEDOR and NCX MAS solidstate NMR experiments for simultaneous acquisition of heteronuclear correlation spectra and distance measurements. J Biomol NMR, (In Press) (2019).
 40.
Tenkortenaar, P. B. W. et al. Rapid and Efficient Method for the Preparation of FmocAmino Acids Starting from 9Fluorenylmethanol. International Journal of Peptide and Protein Research 27, 398–400 (1986).
 41.
Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes, https://spin.niddk.nih.gov/bax/software/NMRPipe/NMRPipe.html.
Acknowledgements
This work is supportted by the National Institute of Health (GM 64742 and HL 144130). The authors would like to thank Dr. John Lee and Prof. Hideki Aihara for providing the SatP protein sample. The TIDE software is available from the authors upon request.
Author information
Affiliations
Contributions
M.V.S. and G.V. conceived and designed the project. G.V. directed the research and contributed to writing the manuscript. T.G. contributed to performing NMR experiments and discussions. S.W. contributed to critical discussion and writing of the manuscript. All authors contributed to the final version of the manuscript.
Corresponding author
Ethics declarations
Competing Interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
V. S., M., Gopinath, T., Wang, S. et al. T_{2}* weighted Deconvolution of NMR Spectra: Application to 2D Homonuclear MAS SolidState NMR of Membrane Proteins. Sci Rep 9, 8225 (2019). https://doi.org/10.1038/s41598019444613
Received:
Accepted:
Published:
Further reading

Signal Deconvolution and Noise Factor Analysis Based on a Combination of Time–Frequency Analysis and Probabilistic Sparse Matrix Factorization
International Journal of Molecular Sciences (2020)

Molecular Mechanism for the Suppression of Alpha Synuclein Membrane Toxicity by an Unconventional Extracellular Chaperone
Journal of the American Chemical Society (2020)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.