Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ensemble determination by NMR data deconvolution

Abstract

Nuclear magnetic resonance (NMR) is the spectroscopic technique of choice for determining molecular conformations in solution at atomic resolution. As solution NMR spectra are rich in structural and dynamic information, the way in which the data should be acquired and handled to deliver accurate ensembles is not trivial. This Review provides a guide to the NMR experiment selection and parametrization process, the generation of viable theoretical conformer pools and the deconvolution of time-averaged NMR data into a conformer ensemble that accurately represents a flexible molecule in solution. In addition to reviewing the key elements of solution ensemble determination of flexible mid-sized molecules, the feasibility and pitfalls of data deconvolution are discussed with a comparison of the performance of representative algorithms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Workflow of NMR data deconvolution.
Fig. 2: Nonlinear scaling of nuclear Overhauser effect-derived interproton distances.
Fig. 3: Nuclear Overhauser effect build-up curves.
Fig. 4: Common errors observed in nuclear Overhauser effect build-up curves.
Fig. 5: Maximum nuclear Overhauser effect enhancement.
Fig. 6: Compounds used for method validation and comparison.

Similar content being viewed by others

Data availability

The original NMR spectroscopic (FIDs) and computational data (structure files); input and output files for NAMFIS, NMR_FIT, DISCON and StereoFitter; the simulated and experimental data for validation of the deconvolution algorithms; and the installation files, along with instructions for the installation of NAMFIS, are available at Zenodo: https://doi.org/10.5281/zenodo.6866837.

References

  1. Huang, Z. H., Grape, E. S., Li, J., Inge, A. K. & Zou, X. D. 3D electron diffraction as an important technique for structure elucidation of metal–organic frameworks and covalent organic frameworks. Coord. Chem. Rev. 427, 213583 (2021).

    Article  CAS  Google Scholar 

  2. Kuntz, I. D. Structure-based strategies for drug design and discovery. Science 257, 1078–1082 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Miller, R. J. D. Femtosecond crystallography with ultrabright electrons and X-rays: capturing chemistry in action. Science 343, 1108–1116 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Danelius, E. et al. Solution conformations explain the chameleonic behaviour of macrocyclic drugs. Chem. Eur. J. 26, 5231–5244 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Ermondi, G. et al. Managing experimental 3D structures in the beyond-rule-of-5 chemical space: the case of rifampicin. Chem. Eur. J. 27, 10394–10404 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Haubrich, K., Spiteri, V. A., Farnaby, W., Sobott, F. & Ciulli, A. Breaking free from the crystal lattice: structural biology in solution to study protein degraders. Curr. Opin. Struct. Biol. 79, 102534 (2023).

    Article  CAS  PubMed  Google Scholar 

  7. Pradeilles, J. A. et al. Odd–even alternations in helical propensity of a homologous series of hydrocarbons. Nat. Chem. 12, 475–480 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Bohle, F. & Grimme, S. Hydrocarbon macrocycle conformer ensembles and 13C-NMR spectra. Angew. Chem. Int. Ed. 61, e202113905 (2022).

    Article  CAS  Google Scholar 

  9. Dickman, R. et al. A chemical biology approach to understanding molecular recognition of lipid II by Nisin(1–12): synthesis and NMR ensemble analysis of Nisin(1–12) and analogues. Chem. Eur. J. 25, 14572–14582 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Hagele, G. NMR controlled titrations characterizing organophosphorus compounds. Phosphorus Sulfur Silicon Relat. Elem. 194, 361–363 (2019).

    Article  Google Scholar 

  11. Kolmer, A., Edwards, L. J., Kuprov, I. & Thiele, C. M. Conformational analysis of small organic molecules using NOE and RDC data: a discussion of strychnine and α-methylene-γ-butyrolactone. J. Magn. Res. 261, 101–109 (2015).

    Article  CAS  Google Scholar 

  12. Navarro-Vázquez, A., Gil, R. R. & Blinov, K. Computer-assisted 3D structure elucidation (CASE-3D) of natural products combining isotropic and anisotropic NMR parameters. J. Nat. Prod. 81, 203–210 (2018).

    Article  PubMed  Google Scholar 

  13. Peintner, S. & Erdélyi, M. Pushing the limits of characterising a weak halogen bond in solution. Chem. Eur. J. 28, e202103559 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Slabber, C. A., Grimmer, C. D. & Robinson, R. S. Solution conformations of curcumin in DMSO. J. Nat. Prod. 79, 2726–2730 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Teilum, K., Kunze, M. B., Erlendsson, S. & Kragelund, B. B. (S)Pinning down protein interactions by NMR. Protein Sci. 26, 436–451 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wu, J. et al. Synergy of synthesis, computation and NMR reveals correct baulamycin structures. Nature 547, 436–440 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Kwan, E. E. & Huang, S. G. Structural elucidation with NMR spectroscopy: practical strategies for organic chemists. Eur. J. Org. Chem. 2008, 2671–2688 (2008).

    Article  Google Scholar 

  18. Bell, R. A. & Saunders, J. K. Correlation of intramolecular nuclear Overhauser effect with internuclear distance. Can. J. Chem. 48, 1114–1122 (1970).

    Article  CAS  Google Scholar 

  19. Overhauser, A. W. Polarization of nuclei in metals. Phys. Rev. 92, 411–415 (1953).

    Article  CAS  Google Scholar 

  20. Schirmer, R. E., Noggle, J. H., Davis, J. P. & Hart, P. A. Determination of molecular geometry by quantitative application of nuclear overhauser effect. J. Am. Chem. Soc. 92, 3266–3273 (1970).

    Article  CAS  Google Scholar 

  21. Slichter, C. P. The discovery and demonstration of dynamic nuclear polarization — a personal and historical account. Phys. Chem. Chem. Phys. 12, 5741–5751 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Karplus, M. Contact electron–spin coupling of nuclear magnetic moments. J. Chem. Phys. 30, 11–15 (1959).

    Article  CAS  Google Scholar 

  23. Haasnoot, C. A. G., De Leeuw, F. A. A. M. & Altona, C. The relationship between proton–proton NMR coupling-constants and substituent electronegativities — an empirical generalization of the Karplus equation. Tetrahedron 36, 2783–2792 (1980).

    Article  CAS  Google Scholar 

  24. Liu, Y. Z. et al. Application of anisotropic NMR parameters to the confirmation of molecular structure. Nat. Protoc. 14, 217–247 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Müntener, T., Joss, D., Häussinger, D. & Hiller, S. Pseudocontact shifts in biomolecular NMR spectroscopy. Chem. Rev. 122, 9422–9467 (2022).

    Article  PubMed  Google Scholar 

  26. Nitsche, C. & Otting, G. Pseudocontact shifts in biomolecular NMR using paramagnetic metal tags. Prog. Nucl. Magn. Reson. Spectrosc. 9899, 20–49 (2017).

    Article  PubMed  Google Scholar 

  27. Pons, M. & Millet, O. Dynamic NMR studies of supramolecular complexes. Prog. Nucl. Magn. Reson. Spectrosc. 38, 267–324 (2001).

    Article  CAS  Google Scholar 

  28. Bryant, R. G. The NMR time scale. J. Chem. Educ. 60, 933–935 (1983).

    Article  CAS  Google Scholar 

  29. Pearlman, D. A. FINGAR: a new genetic algorithm-based method for fitting NMR data. J. Biomol. NMR 8, 49–66 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, J. J., Hodges, R. S. & Sykes, B. D. Generating multiple conformations of flexible peptides in solution based on NMR nuclear Overhauser effect data — application to desmopressin. J. Am. Chem. Soc. 117, 8627–8634 (1995).

    Article  CAS  Google Scholar 

  31. Wang, S. et al. Incorporating NOE-derived distances in conformer generation of cyclic peptides with distance geometry. J. Chem. Inf. Model. 62, 472–485 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Güntert, P., Braun, W. & Wüthrich, K. Efficient computation of three-dimensional protein structures in solution from nuclear magnetic resonance data using the program DIANA and the supporting programs CALIBA, HABAS and GLOMSA. J. Mol. Biol. 217, 517–530 (1991).

    Article  PubMed  Google Scholar 

  33. Wüthrich, K. NMR of Proteins and Nucleic Acids: 3 (Baker Lecture Series) Vol. 32 (John Wiley & Sons, 1986).

  34. Sattler, M. & Fesik, S. W. Resolving resonance overlap in the NMR spectra of proteins from differential lanthanide-induced shifts. J. Am. Chem. Soc. 119, 7885–7886 (1997).

    Article  CAS  Google Scholar 

  35. Speciale, I. et al. Liquid-state NMR spectroscopy for complex carbohydrate structural analysis: a Hitchhiker’s guide. Carbohyd. Polym. 277, 118885 (2022).

    Article  CAS  Google Scholar 

  36. Varani, G., Aboulela, F. & Allain, F. H. T. NMR investigation of RNA structure. Prog. Nucl. Magn. Reson. Spectrosc. 29, 51–127 (1996).

    Article  CAS  Google Scholar 

  37. Atilaw, Y. et al. Solution conformations shed light on PROTAC cell permeability. ACS Med. Chem. Lett. 12, 107–114 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Poongavanam, V. et al. Linker-dependent folding rationalizes PROTAC cell permeability. J. Med. Chem. 65, 13029–13040 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hussain, A., Paukovich, N., Henen, M. A. & Vögeli, B. Advances in the exact nuclear Overhauser effect 2018–2022. Methods 206, 87–98 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vögeli, B. The nuclear Overhauser effect from a quantitative perspective. Prog. Nucl. Magn. Reson. Spectrosc. 78, 1–46 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Vögeli, B., Olsson, S., Guntert, P. & Riek, R. The exact NOE as an alternative in ensemble structure determination. Biophys. J. 110, 113–126 (2016). This paper discusses ensemble determination in the context of proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Keepers, J. W. & James, T. L. A theoretical study of distance determinations from NMR. Two-dimensional nuclear Overhauser effect spectra. J. Magn. Res. 57, 404–426 (1984).

    CAS  Google Scholar 

  43. Kumar, A., Wagner, G., Ernst, R. R. & Wuthrich, K. Buildup rates of the nuclear Overhauser effect measured by two-dimensional proton magnetic resonance spectroscopy: implications for studies of protein conformation. J. Am. Chem. Soc. 103, 3654–3658 (1981).

    Article  CAS  Google Scholar 

  44. Macura, S. & Ernst, R. R. Elucidation of cross relaxation in liquids by two-dimensional N.M.R. spectroscopy. Mol. Phys. 41, 95–117 (1980).

    Article  CAS  Google Scholar 

  45. Andersen, N. H., Chen, C. P., Marschner, T. M., Krystek, S. R. & Bassolino, D. A. Conformational isomerism of endothelin in acidic aqueous-media — a quantitative NOESY analysis. Biochemistry 31, 1280–1295 (1992).

    Article  CAS  PubMed  Google Scholar 

  46. Blackledge, M. J. et al. Conformational backbone dynamics of the cyclic decapeptide antamanide — application of a new multiconformational search algorithm based on NMR data. Biochemistry 32, 10960–10974 (1993).

    Article  CAS  PubMed  Google Scholar 

  47. Cicero, D. O., Barbato, G. & Bazzo, R. NMR analysis of molecular flexibility in solution: a new method for the study of complex distributions of rapidly exchanging conformations. Application to a 13-residue peptide with an 8-residue loop. J. Am. Chem. Soc. 117, 1027–1033 (1995).

    Article  CAS  Google Scholar 

  48. Landis, C. & Allured, V. S. Elucidation of solution structures by conformer population analysis of NOE data. J. Am. Chem. Soc. 113, 9493–9499 (1991).

    Article  CAS  Google Scholar 

  49. Meissner, A., Duus, J. Ø. & Sørensen, O. W. Spin-state-selective excitation. Application for E.COSY-type measurement of JHH coupling constants. J. Magn. Res. 128, 92–97 (1997).

    Article  CAS  Google Scholar 

  50. Kiraly, P. et al. Single-scan selective excitation of individual NMR signals in overlapping multiplets. Angew. Chem. Int. Ed. 60, 666–669 (2021).

    Article  CAS  Google Scholar 

  51. Rabenstein, D. L. & Kaerner, A. Simulating NMR spectra — gNMR. Anal. Chem. 69, A302–A303 (1997).

    Article  Google Scholar 

  52. Cobas, C. NMR signal processing, prediction, and structure verification with machine learning techniques. Magn. Reson. Chem. 58, 512–519 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Ruddigkeit, L., van Deursen, R., Blum, L. C. & Reymond, J.-L. Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. J. Chem. Inf. Model. 52, 2864–2875 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Butts, C. P. et al. Interproton distance determinations by NOE — surprising accuracy and precision in a rigid organic molecule. Org. Biomol. Chem. 9, 177–184 (2011). This paper discusses the accuracy of NOE measurements.

    Article  CAS  PubMed  Google Scholar 

  55. Krishna, N. R., Agresti, D. G., Glickson, J. D. & Walter, R. Solution conformation of peptides by intra-molecular nuclear Overhauser effect experiment — study of valinomycin-K+. Biophys. J. 24, 791–814 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Noggle, J. H. & Schirmer, R. E. in The Nuclear Overhauser Effect (eds Noggle, J. H. & Schirmer, R. E.) 113–124 (Academic, 1971).

  57. Noggle, J. H. & Schirmer, R. E. in The Nuclear Overhauser Effect (eds Noggle, J. H. & Schirmer, R. E.) 76–95 (Academic, 1971).

  58. Wieske, L. H. E. & Erdélyi, M. Non-uniform sampling for NOESY? A case study on spiramycin. Magn. Reson. Chem. 59, 723–737 (2021). The paper discusses the detrimental effects of non-uniform sampling on NOESY spectra.

    Article  CAS  PubMed  Google Scholar 

  59. Jones, C. R., Butts, C. P. & Harvey, J. N. Accuracy in determining interproton distances using nuclear Overhauser effect data from a flexible molecule. Beilstein J. Org. Chem. 7, 145–150 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Macura, S., Farmer, B. T. & Brown, L. R. An improved method for the determination of cross-relaxation rates from NOE data. J. Magn. Res. 70, 493–499 (1986).

    CAS  Google Scholar 

  61. Macura, S., Huang, Y., Suter, D. & Ernst, R. R. Two-dimensional chemical exchange and cross-relaxation spectroscopy of coupled nuclear spins. J. Magn. Res. 43, 259–281 (1981).

    CAS  Google Scholar 

  62. Claridge, T. D. W. High Resolution NMR Techniques in Organic Chemistry 3rd edn, 327 (Elsevier, 2016).

  63. Claridge, T. D. W. High Resolution NMR Techniques in Organic Chemistry 3rd edn, 315–380 (Elsevier, 2016).

  64. Neuhaus, D. & Williamson, M. The Nuclear Overhauser Effect in Structural and Conformational Analysis 2nd edn, 111–117 (Wiley-VCH, 2000).

  65. Kessler, H., Oschkinat, H., Griesinger, C. & Bermel, W. Transformation of homonuclear two-dimensional NMR techniques into one-dimensional techniques using Gaussian pulses. J. Magn. Reson. 70, 106–133 (1986).

    CAS  Google Scholar 

  66. Kumar, A., Wagner, G., Ernst, R. R. & Wuthrich, K. Buildup rates of the nuclear Overhauser effect measured by two-dimensional proton magnetic-resonance spectroscopy — implications for studies of protein conformation. J. Am. Chem. Soc. 103, 3654–3658 (1981).

    Article  CAS  Google Scholar 

  67. Hu, H. T. & Krishnamurthy, K. Revisiting the initial rate approximation in kinetic NOE measurements. J. Magn. Res. 182, 173–177 (2006).

    Article  CAS  Google Scholar 

  68. Esposito, G. & Pastore, A. An alternative method for distance evaluation from NOESY spectra. J. Magn. Res. 76, 331–336 (1988).

    CAS  Google Scholar 

  69. Farmer, B. T., Macura, S. & Brown, L. R. The effect of molecular motion on cross relaxation in the laboratory and rotating frames. J. Magn. Res. 80, 1–22 (1988).

    CAS  Google Scholar 

  70. Bax, A. & Davis, D. G. Practical aspects of two-dimensional transverse NOE spectroscopy. J. Magn. Res. 63, 207–213 (1985).

    CAS  Google Scholar 

  71. Claridge, T. D. W. High Resolution NMR Techniques in Organic Chemistry 3rd edn, 354–355 (Elsevier, 2016).

  72. Ammalahti, E., Bardet, M., Molko, D. & Cadet, J. Evaluation of distances from ROESY experiments with the intensity-ratio method. J. Magn. Reson. Ser. A 122, 230–232 (1996).

    Article  CAS  Google Scholar 

  73. Thiele, C. M., Petzold, K. & Schleucher, J. EASY ROESY: reliable cross-peak integration in adiabatic symmetrized ROESY. Chem. Eur. J. 15, 585–588 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Ilgen, J., Nowag, J., Kaltschnee, L., Schmidts, V. & Thiele, C. M. Gradient selected pure shift EASY-ROESY techniques facilitate the quantitative measurement of H-1,H-1-distance restraints in congested spectral regions. J. Magn. Reson. 324, 1069000 (2021).

    Article  Google Scholar 

  75. Prochazkova, E. et al. Uncovering key structural features of an enantioselective peptide-catalyzed acylation utilizing advanced NMR techniques. Angew. Chem. Int. Ed. 55, 15754–15759 (2016).

    Article  CAS  Google Scholar 

  76. Adams, R. W. Pure shift NMR spectroscopy. eMagRes 3, 1–15 (2014).

    Google Scholar 

  77. Chini, M. G. et al. Quantitative NMR-derived interproton distances combined with quantum mechanical calculations of C-13 chemical shifts in the stereochemical determination of conicasterol F, a nuclear receptor ligand from Theonella swinhoei. J. Org. Chem. 77, 1489–1496 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Imtiaz, S. & Ali, S. M. Atom accurate structure determination of alprazolam/cyclodextrin inclusion complexes by ROESY and computational approaches. J. Indian Chem. Soc. 99, 100299 (2022).

    Article  CAS  Google Scholar 

  79. Levy, R. M., Karplus, M. & McCammon, J. A. Increase of carbon-13 NMR relaxation times in proteins due to picosecond motional averaging. J. Am. Chem. Soc. 103, 994–996 (1981).

    Article  CAS  Google Scholar 

  80. Levy, R. M., Karplus, M. & Wolynes, P. G. NMR relaxation parameters in molecules with internal motion: exact langevin trajectory results compared with simplified relaxation models. J. Am. Chem. Soc. 103, 5998–6011 (1981).

    Article  CAS  Google Scholar 

  81. McCain, D. C. & Markley, J. L. Rotational spectral density functions for aqueous sucrose: experimental determination using carbon-13 NMR. J. Am. Chem. Soc. 108, 4259–4264 (1986).

    Article  CAS  Google Scholar 

  82. McCain, D. C. & Markley, J. L. Internal motions of the three hydroxymethyl groups in aqueous sucrose. J. Magn. Res. 73, 244–251 (1987).

    CAS  Google Scholar 

  83. McKay, R. T. Annual Rep. NMR Spectr. Vol. 66, 33–76 (Academic, 2009).

  84. Howe, P. W. A. Suppression of protonated organic solvents in NMR spectroscopy using a perfect echo low-pass filtration pulse sequence. Anal. Chem. 90, 4316–4319 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Claridge, T. D. W. High Resolution NMR Techniques in Organic Chemistry 3rd edn, 380–386 (Elsevier, 2016).

  86. Piotto, M., Saudek, V. & Sklenar, V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J. Biomol. NMR 2, 661–665 (1992).

    Article  CAS  PubMed  Google Scholar 

  87. Hwang, T. L. & Shaka, A. J. Water suppression that works — excitation sculpting using arbitrary wave-forms and pulsed-field gradients. J. Magn. Reson. Ser. A 112, 275–279 (1995).

    Article  CAS  Google Scholar 

  88. Adams, R. W., Holroyd, C. M., Aguilar, J. A., Nilsson, M. & Morris, G. A. ‘Perfecting’ WATERGATE: clean proton NMR spectra from aqueous solution. Chem. Commun. 49, 358–360 (2013).

    Article  CAS  Google Scholar 

  89. Simpson, A. J. & Brown, S. A. Purge NMR: effective and easy solvent suppression. J. Magn. Reson. 175, 340–346 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Nichols, P. J. et al. Reducing the measurement time of exact NOEs by non-uniform sampling. J. Biomol. NMR 74, 717–739 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Andersen, N. H., Eaton, H. L. & Lai, X. Quantitative small molecule NOESY — a practical guide for derivation of cross-relaxation rates and internuclear distances. Magn. Reson. Chem. 27, 515–528 (1989).

    Article  CAS  Google Scholar 

  92. Andersen, N. H., Nguyen, K. T., Hartzell, C. J. & Eaton, H. L. Rapid acquisition of the NOE difference spectra — the relative mertis of transient versus driven experimental protocols. J. Magn. Res. 74, 195–211 (1987).

    CAS  Google Scholar 

  93. Cobas, C. Applications of the Whittaker smoother in NMR spectroscopy. Magn. Reson. Chem. 56, 1140–1148 (2018).

    Article  CAS  PubMed  Google Scholar 

  94. Neuhaus, D. & Williamson, M. The Nuclear Overhauser Effect in Structural and Conformational Analysis 1st edn, 294–296 (Wiley-VCH, 1989).

  95. Claridge, T. D. W. High Resolution NMR Techniques in Organic Chemistry 3rd edn, 345 (Elsevier, 2016).

  96. Neuhaus, D. & Williamson, M. The Nuclear Overhauser Effect in Structural and Conformational Analysis 2nd edn, 493–499 (Wiley-VCH, 2000).

  97. Koos, M. R. M., Schulz, K. H. G. & Gil, R. R. Reference-free NOE NMR analysis. Chem. Sci. 11, 9930–9936 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hawkins, P. C. D. Conformation generation: the state of the art. J. Chem. Inf. Model. 57, 1747–1756 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Nevins, N., Cicero, D. & Snyder, J. P. A test of the single-conformation hypothesis in the analysis of NMR data for small polar molecules: a force field comparison. J. Org. Chem. 64, 3979–3986 (1999). This study demonstrates that ensembles cannot be represented by a single conformer and that computed energies are not reliable enough to be used in ensemble determination.

    Article  CAS  Google Scholar 

  100. Spellmeyer, D. C., Wong, A. K., Bower, M. J. & Blaney, J. M. Conformational analysis using distance geometry methods. J. Mol. Graph. Model. 15, 18–36 (1997).

    Article  CAS  PubMed  Google Scholar 

  101. Chang, G., Guida, W. C. & Still, W. C. An internal coordinate Monte-Carlo method for searching conformational space. J. Am. Chem. Soc. 111, 4379–4386 (1989).

    Article  CAS  Google Scholar 

  102. Hawkins, P. C. D. Conformation generation: the state of the art. J. Chem. Inf. Model. 57, 1747–1756 (2017).

    Article  CAS  PubMed  Google Scholar 

  103. Chang, G., Guida, W. C. & Still, W. C. An internal-coordinate Monte Carlo method for searching conformational space. J. Am. Chem. Soc. 111, 4379–4386 (1989).

    Article  CAS  Google Scholar 

  104. Olanders, G., Alogheli, H., Brandt, P. & Karlen, A. Conformational analysis of macrocycles: comparing general and specialized methods. J. Comput. Aid. Mol. Des. 34, 231–252 (2020).

    Article  CAS  Google Scholar 

  105. Supady, A., Blum, V. & Baldauf, C. First-principles molecular structure search with a genetic algorithm. J. Chem. Inf. Model. 55, 2338–2348 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Ämmälahti, E., Bardet, M., Molko, D. & Cadet, J. Evaluation of distances from ROESY experiments with the intensity-ratio method. J. Magn. Res. 122, 230–232 (1996).

    Article  Google Scholar 

  107. Cleves, A. E. & Jain, A. N. ForceGen 3D structure and conformer generation: from small lead-like molecules to macrocyclic drugs. J. Comput. Aided Mol. Des. 31, 419–439 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Beckers, M. L. M., Buydens, L. M. C., Pikkemaat, J. A. & Altona, C. Application of a genetic algorithm in the conformational analysis of methylene-acetal-linked thymine dimers in DNA: comparison with distance geometry calculations. J. Biomol. NMR 9, 25–34 (1997).

    Article  CAS  PubMed  Google Scholar 

  109. Harish, B., Swapna, G. V. T., Kornhaber, G. J., Montelione, G. T. & Carey, J. Multiple helical conformations of the helix–turn–helix region revealed by NOE-restrained MD simulations of tryptophan aporepressor, TrpR. Proteins 85, 731–740 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Immel, S., Kock, M. & Reggelin, M. NMR-based configurational assignments of natural products: Gibbs sampling and Bayesian inference using floating chirality distance geometry calculations. Mar. Drugs 20, 14 (2022).

    Article  CAS  Google Scholar 

  111. Nardini, V., Dias, L. G., Palaretti, V. & da Silva, G. V. J. Citronellal assumes a folded conformation in solution due to dispersion interactions: a joint NMR-DFT analysis. J. Mol. Struct. 1157, 401–407 (2018).

    Article  CAS  Google Scholar 

  112. Aliev, A. E. & Sinitsyna, A. A. Modified Karplus equations and their stereochemical applications. Bull. Russ. Acad. Sci. Chem. Sci. 41, 1143–1160 (1992).

    Article  Google Scholar 

  113. Li, F., Lee, J. H., Grishaev, A., Ying, J. F. & Bax, A. High accuracy of Karplus equations for relating three-bond J couplings to protein backbone torsion angles. Chem. Phys. Chem. 16, 572–578 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Wu, A. A. & Crerner, D. Extension of the Karplus relationship for NMR spin–spin coupling constants to nonplanar ring systems: pseudorotation of tetrahydrofuran. Int. J. Mol. Sci. 4, 158–192 (2003).

    Article  CAS  Google Scholar 

  115. Friden-Saxin, M. et al. Proline-mediated formation of novel chroman-4-one tetrahydropyrimidines. Tetrahedron 68, 7035–7040 (2012).

    Article  CAS  Google Scholar 

  116. Jogalekar, A. S. et al. Dictyostatin flexibility bridges conformations in solution and in the β-tubulin taxane binding site. J. Am. Chem. Soc. 133, 2427–2436 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Thepchatri, P. et al. Conformations of laulimalide in DMSO-d6. J. Am. Chem. Soc. 127, 12838–12846 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Evans, D. A., Bodkin, M. J., Baker, S. R. & Sharman, G. J. Janocchio — a Java applet for viewing 3D structures and calculating NMR couplings and NOEs. Magn. Reson. Chem. 45, 595–600 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Lai, X. N., Chen, C. P. & Andersen, N. H. The DISCON algorithm, an accurate and robust alternative to an eigenvalue solution for extracting experimental distances from NOESY data. J. Magn. Res. B 101, 271–288 (1993).

    Article  CAS  Google Scholar 

  120. Atasoylu, O., Furst, G., Risatti, C. & Smith, A. B. The solution structure of (+)-spongistatin 1 in DMSO. Org. Lett. 12, 1788–1791 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ludvigsen, S., Andersen, K. V. & Poulsen, F. M. Accurate measurements of coupling-constants from two-dimensional nucelar magnetic resonance spectra of proteins and determination of φ-angles. J. Mol. Biol. 217, 731–736 (1991).

    Article  PubMed  Google Scholar 

  122. Schmieder, P. & Kessler, H. Determination of the ϕ angle in a peptide backbone by NMR spectroscopy with a combination of homonuclear and heteronuclear coupling-constants. Biopolymers 32, 435–440 (1992).

    Article  CAS  PubMed  Google Scholar 

  123. Aydin, R. & Günther, H. 13C, 1H spin–spin coupling. X—norbornane: a reinvestigation of the Karplus curve for 3J(13C, 1H). Magn. Reson. Chem. 28, 448–457 (1990).

    Article  CAS  Google Scholar 

  124. Tvaroska, I. & Taravel, F. R. in Advances in Carbohydrate Chemistry and Biochemistry Vol. 51 (ed. Horton, D.) 15–61 (Academic, 1995).

  125. PCMODEL V 8.5 Molecular Modeling Software for Windows Operating System, Apple Macintosh OS, Linux and Unix (Serena Software, 2003).

  126. Vainio, M. J. & Johnson, M. S. Generating conformer ensembles using a multiobjective genetic algorithm. J. Chem. Inf. Model. 47, 2462–2474 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Erdelyi, M. et al. Conformational preferences of natural and C3-modified epothilones in aqueous solution. J. Med. Chem. 51, 1469–1473 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Umerweneza, D. et al. Macrocyclic pyrrolizidine alkaloids and silphiperfolanol angelate esters from Solanecio mannii. Eur. J. Org. Chem. 26, e202201280 (2022).

    Google Scholar 

  129. Efron, B. The Jackknife, the Bootstrap, and Other Resampling Plans (Society for Industrial and Applied Mathematics, 1987).

  130. Goodman, J. M. & Still, W. C. An unbounded systematic search of conformational space. J. Comput. Chem. 12, 1110–1117 (1991).

    Article  CAS  Google Scholar 

  131. Saunders, M. Stochastic search for the conformations of bicyclic hydrocarbons. J. Comput. Chem. 10, 203–208 (1989).

    Article  CAS  Google Scholar 

  132. Danelius, E. et al. Dynamic chirality in the mechanism of action of allosteric CD36 modulators of macrophage-driven inflammation. J. Med. Chem. 62, 11071–11079 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank S. Wlodek (OpenEye) for giving us early access to NMR_FIT, O. Atasoylu for his help with DISCON, and P. Monje and A. Navarro-Vazquez for their guidance with StereoFitter. The authors are grateful to J. Bogaerts and A. Demkiv for their Linux support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of the article.

Corresponding author

Correspondence to Máté Erdélyi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Beat Vögeli and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Dedication

This Review is dedicated to the memory of Professor Adolf Gogoll (1957–2023).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

OpenEye Scientific: https://www.eyesopen.com/

Supplementary information

Glossary

Initial-rate approximation

The assumption that the nuclear Overhauser effect observed at short mixing times, in the linear regime of the build-up curve, is proportional to the interproton distance.

Longitudinal relaxation

The time needed for a given spin to fall back to equilibrium. Also known as spin–lattice relaxation.

Mixing time

The time delay in the nuclear Overhauser effect (NOE) spectroscopy pulse sequence during which cross-relaxation occurs, giving rise to the NOE. Within the linear build-up regime, the longer the mixing time, the more time is given for the magnetization to transfer between spins, resulting in stronger NOE cross peaks.

NOE build-up curves

Series of nuclear Overhauser effect (NOE) experiments with at least four mixing times recorded to determine the NOE build-up rate, which is the rate of NOE signal evolution. At short enough mixing times, the intensity of the NOE cross peaks linearly correlates to the mixing time, and the slope of the signal build-ups provides population-averaged interproton distances.

Non-uniform sampling

A way of recording 2D NMR spectra whereby only a subset of increments (number of points in the f1 dimension) is collected, and the missing increments need to be reconstructed before Fourier transform.

Nuclear Overhauser effect

(NOE). A through-space dipole–dipole interaction between spins; the magnitude of the effect depends on the distance separation of the spins, among other factors.

Rotating-frame Overhauser effect spectroscopy

(ROESY). A variation of the nuclear Overhauser effect spectroscopy sequence with the difference that the signals of a ROESY are always positive, independent of the correlation time and spectrometer frequency.

Solution ensembles

Collection of different conformations a molecule adopts in solution.

Solvent suppression

A pulse or pulse combination used with the aim of removing a strong solvent signal from a spectrum, to avoid overloading of the analogue-to-digital converter (ADC).

t 1 noise

Noise visible in 2D spectra along the indirect (f1) axis owing to too few increments, resulting in a truncated free induction delay, and after Fourier transformation, manifesting as wiggles in the baseline; most commonly seen at intense singlets within a spectrum. To a certain extent, it can be compensated with weighting functions.

T 2 relaxation

Process by which the transverse components of magnetization dephase, causing the signal intensity to exponentially decay. The time constant T2 is the time required for the transverse magnetization to fall to ~37% (1/e) of its initial value.

Total correlation spectroscopy

(TOCSY). A homonuclear experiment that allows for the detection of covalently connected spins but is not restricted to the closest neighbours.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wieske, L.H.E., Peintner, S. & Erdélyi, M. Ensemble determination by NMR data deconvolution. Nat Rev Chem 7, 511–524 (2023). https://doi.org/10.1038/s41570-023-00494-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-023-00494-x

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research