Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A new comprehensive trait database of European and Maghreb butterflies, Papilionoidea

Abstract

Trait-based analyses explaining the different responses of species and communities to environmental changes are increasing in frequency. European butterflies are an indicator group that responds rapidly to environmental changes with extensive citizen science contributions to documenting changes of abundance and distribution. Species traits have been used to explain long- and short-term responses to climate, land-use and vegetation changes. Studies are often characterised by limited trait sets being used, with risks that the relative roles of different traits are not fully explored. Butterfly trait information is dispersed amongst various sources and descriptions sometimes differ between sources. We have therefore drawn together multiple information sets to provide a comprehensive trait database covering 542 taxa and 25 traits described by 217 variables and sub-states of the butterflies of Europe and Maghreb (northwest Africa) which should serve for improved trait-based ecological, conservation-related, phylogeographic and evolutionary studies of this group of insects. We provide this data in two forms; the basic data and as processed continuous and multinomial data, to enhance its potential usage.

Measurement(s) resources • Egg Laying • larval environment • pupal environment • geographic location • behavior • size • voltinism • phenology • host plant
Technology Type(s) digital curation
Factor Type(s) species
Sample Characteristic - Organism Papilionoidea
Sample Characteristic - Location Europe • Northwest Africa

Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.12998828

Background & Summary

The taxonomy, distribution, and biology of European butterflies has been studied since the 18th century. Due to the precise knowledge of changes in distribution and abundance, driven by extensive citizen science contributions, and their trophic specialisation and immediate responses to environmental changes1 they are frequently used as indicators of environmental change2. Recently, a series of comprehensive resources have been published for European butterflies comprising a detailed taxonomic list3, a dataset for 15,609 sequences for the COI mitochondrial markers for all Western-Central European species4, a dated phylogenetic tree for all European species5, atlases describing their detailed distributions6, and climatic risk assessments7. In turn, species traits are fundamental descriptors of feeding ecology, life-history, morphology, resource use, behaviour and physiological constraints8. It has long been recognised9 that the availability of such data is largely limited and incomplete. Only recently has a geographically extensive series of traits describing climatic preferences based on temperature and precipitation been produced10 along with a series of six traits describing some features of feeding ecology, morphology, and life histories of butterflies from Western and Central Europe4. Species traits have been used to explain extinction risk and conservation status11,12,13, colonisation and distribution changes14,15, phenology and potential for range shifts in relation to climate change16,17,18 and phylogeographic patterns4 over large spatial scales. More detailed trait information at smaller spatial scales has been used to identify ecological groupings of species, for both butterflies in the British Isles19 and macromoths of Central Europe20. However, most studies which have used trait information to identify ecological relationships, current extinction risks and distributions have tended to use either limited sources of information and/or limited numbers of butterfly species or have been concentrated at the regional scale21,22.

Because single sources of trait information may be limited (e.g. in geographical scope) or conflict with each other23, we present a new comprehensive open-access trait database24, with a maintained version (https://butterflytraits.github.io/European-Butterfly-Traits/index.html) of the European and Maghreb butterflies. We have aimed to pull together all the existing trait information available for each species. This has been done by synthesising the existing information from field guides, ecological atlases, reliable on-line sources, expert opinion and journal articles. Our database provides trait information for 542 taxa and covers 25 main traits (some subdivided - giving 217 trait states in total), including life history, resource use by all life-cycle stages, and behavioural information. Where specific traits are variable within species we also give data on this variability. We also process this data to provide multinomial and continuous variables and measures of their variability, resulting in a matrix of 542 species by 31 variables. We also list our information sources for the traits. Although some previous trait-based analyses have included vegetation associations, our trait database does not include these for two reasons. First, the habitat a species occurs in is determined by the occurrence and spatial distributions of species-specific resources25,26. Second, resource, life-history and behavioural traits can be used to predict the vegetation structures in which species occur19.

Our database provides an outstanding resource for improving our understanding of fundamental mechanisms and processes such as how traits define species occurrence and co-occurrences, their responses to environmental change, their spatial dynamics, and their associations with vegetation structures. Since traits vary within different taxonomic groups, understanding their evolution and variability within different branches of the tree of life can also provide insights into phylogenetic constraints on species resource requirements and ultimately on their local abundance and large-scale occurrence and vulnerability to environmental change.

Methods

Taxon and geographic coverage

Our dataset (542 taxa) represents the complete butterfly fauna of mainland Europe including the western parts of Russia, the European islands, Macaronesia and the Maghreb (North Africa). This includes all of the 496 species occurring in Europe according to the latest checklist of European butterflies3, but we have also included taxa (Table 1) that are confined the Maghreb or have very divergent traits from the nominate species according to some sources within our study area (Fig. 1). The nomenclature is consistent with that used in the checklist3. Trait information is recorded for all the families of butterflies included in the geographic area (Papilionidae, Hesperiidae, Pieridae, Riodinidae, Lycaenidae and Nymphalidae). For species that also occur beyond the study area, trait information was taken from the main study area, if possible. For example, for those species that have a pan-Palearctic distribution only information from the European range was included in our dataset.

Table 1 Species not in the European checklist3 but included in the trait database of European and Maghreb butterflies.
Fig. 1
figure 1

The geographic area covered by the European and Maghreb butterfly database.

Trait information was gathered from sources including field guides, books and atlases27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62, scientific papers63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166, and some selected online resources (https://butterfliesoffrance.com, https://iucnredlist.org, https://lepidoptera.sk, http://luontoportti.com/suomi/enhttp://leps.it, http://eurobutterflies.comhttp://www.lepiforum.de, https://minambiente.it/home_naturahttps://micheltarrier.com/micheltarrier-com/rhopalocera, http://babochki-kavkaza.ru, http://pyrgus.de, http://butterflyeurope.co.uk, http://lepiforum.de) and direct observation in the field. Species-specific information sources are given in the database24 and website (https://butterflytraits.github.io/European-Butterfly-Traits/index.html). In cases with multiple sources of trait information, data from peer reviewed papers were preferentially used; in practice this made up a small proportion of the total trait data. In cases where differences were identified in trait information between different sources, and could be identified as representing trait diversity, all sets of information were included in the trait database. Where sources clearly conflicted, we used the information that we deemed the most reliable. When published information was lacking, we inferred traits using photographs from two reliable sources (https://www.leps.it & http://pyrgus.de) if the traits could be unequivocally determined. This included hostplants and hostplant types, egg-laying location, larval location, adult feeding, adult basking type and basking sites. Trait information based on photographs was independently assessed by the authors in order to check the validity of the inferences. For some taxa certain trait information was not available in any source, and thus it is missing in the database.

The first version of the trait database24 was finalised after three steps had been completed for all taxa. These were 1) mining all the standard references (e.g guides and atlases) for trait information, 2) filling gaps in trait information through a thorough literature search via Google Scholar and PubMed, and 3) emailing and asking experts on particular taxa for additional trait information.

Trait types

Our database covers the traits of all stages of the butterfly life cycle. Many trait types included in the database along with their subdivisions into individual states were derived from an earlier treatment of the butterflies of the British Isles19 but the trait types have been extended for this database. Individual traits were defined prior to the beginning of data collation to allow for unambiguous coding. Comprehensive trait definitions are in the file traitdefinitions.pdf on the Dryad repository24 and curated on-line version (https://butterflytraits.github.io/European-Butterfly-Traits/index.html). Most of the traits types in our raw data trait database (state table) are coded as binary, variables, but a minority are continuous (Online-only Table 1). Most traits included in this dataset are divided into multiple sub-traits. For example, the trait ‘overwintering stage’ comprises four binary sub-traits each of which indicates one stage of a species’ life cycle: egg, larva, pupa or adult. A species can have any combination of 0 and 1 for each of these sub-traits. This allows for the coding of trait plasticity across a species’ range. Likewise, voltinism is coded as binary values for different states. This coding of the basic data (state table) has been transformed (traits table) into a series of multinomial traits, derived from binary states in the state table, and as continuous data, where the data in the state table is also continuous (Online-only Table 2). Additional variables are added in the traits table to describe variability within traits, resulting in a matrix of 542 species x 31 trait variables. Presenting the basic data within the database (state table) facilitates adding data in the future, which could include novel combinations of sub-trait states, whilst providing the processed data (traits table) and original raw data (state table) aids different analytical procedures.

Traits are divided into four main types: ‘life history’, ‘morphological’,‘resource-based’, and ‘behavioural’. Life history traits describe a species’ life cycle related to reproduction and also to growth and survival, including the number of generations per year (voltinism), egg laying strategy (egg laying type) and overwintering stage. We use wing size (both forewing length and precisely defined wingspan) as key morphological traits because they have been used in previous trait-based analyses, being correlated with mobility167,168,169, development time170, and reproductive output171, as size correlates with many aspects of life history172,173. Wingspan is included as it also includes an approximate measure of thoracic size, and thus flight muscle mass which may influence flight capacity and dynamics. ‘Resource-based traits’ describe species’ relationships with environmental resources. Resources include consumables that can be depleted over time when used or utilities that are not depleted. For example, ‘adult feeding’ describes the range of resources consumed by adults which may be temporarily or permanently depleted. Likewise, ‘adult roosting’ describes structures (utilities) used for roosting behaviour; these structures are resources, and although not directly consumed there may be a finite number of suitable features of this type within a location which may be limiting factors for local populations and may become the subject of both interspecific and intraspecific competition25,26.

Some traits in the database are primarily behavioural such as ‘mate locating type’, but these traits are also closely linked with traits that relate more directly to resource-usage (in this case with ‘mate locating location’); thus, behavioural traits can also be linked to resources. Larval hostplants are examined in detail in several traits because of their importance for the life cycle and population structure of butterflies. Some authors of previous work using butterfly traits have included ‘habitat breadth’ as a trait14,174, although the physical structures/vegetation types occupied by species are not traits themselves, but the result of species occurring in those locations where their essential resources co-occur in spatial patterns and densities that they can use and these can change substantially across the geographic area our database covers. Essentially, species habitats are defined by their resources25,26 and the resource requirements that species have are fundamental traits. Biotope or habitat associations are therefore not included in this dataset as they can be derived from the traits described in our database24. Additionally, biotope traits have been shown to have poor reproducibility among different trait sources23 and have been found to be less useful than other types of traits for understanding the responses of butterflies to environmental change over time at a large scale19,23. At a smaller scale, biotope associations may be useful characteristics for aiding in butterfly conservation and habitat classification, but any attempt to synthesise information at a large geographic scale describing habitat preferences from multiple sources would likely be both error-prone and probably too coarse for most analyses. We also did not include measures of climatic requirements and geographic ranges in our dataset since they are already publicly available in the CLIMBER dataset10.

Data Records

The database24 deposited on the Dryad Digital Repository and the live version (https://butterflytraits.github.io/European-Butterfly-Traits/index.html) including species specific information sources and a PDF-file describing each of the variables in the raw state table and traits table (ButterflyTraitDefinitions.pdf). The live version includes a mechanism for feedback and adding new information. For some taxa there are missing data and some traits currently have more missing values than others. Life history and hostplant related traits are extensively covered with few missing values, but behavioural traits have the most missing values as they usually require direct observation in the field, thus the disparity. However, the types of traits with missing data (Table 2) indicate where targeted fieldwork is required. Likewise, species with poor overall data also warrant targeted future effort.

Table 2 The percentage of each family within the European and Maghreb butterflies trait database with incomplete trait data, described by 31 multinomial and continuous variables in the traits table.

Technical Validation

The records included in the database are based on previously published information from field guides, ecological atlases and peer reviewed journal articles, supplemented with the authors’ personal observations. We are therefore confident as to their accuracy. When sources highlighted that records for a particular trait were doubtful, this information was not included in the dataset. The author team comprises experts on butterfly ecology coming from seven countries across Europe thus ensuring the highest level of repeated quality control while providing best knowledge across the biomes in Europe. The authors have examined the dataset to check for errors and to assess the accuracy of the trait information included. All data included in the dataset is fully referenced which allows anyone to go back to the original records for any piece of trait information. The dataset currently contains some missing values, especially for highly localised species and we intend to keep the database ‘live’ and to manage updates with new information. Certain traits such as voltinism and phenology (flight months) are known to vary across the latitudinal gradient as these traits may in part be responses to accumulated growing degree days175. We are confident that we have captured variability of these traits for the majority of species by consulting trait sources that encompass both the full European range as well as smaller areas. We will accept data into our live version of the database from existing resources, unpublished information and new published information. Each species has its own reference list so existing data can be checked and new information correctly integrated into the database. Data submission methods are described in the live database.

Usage Notes

We have provided the first extensive database of butterfly traits in Europe and North Africa. Of particular value is the species and geographic coverage and the extensive sets of traits that we have included. This provides an outstanding resource for improving our understanding of fundamental processes such as how traits define species co-occurrences and their responses to environmental change, their spatial dynamics, and their associations with vegetation structures. Since traits vary within different taxonomic groups, understanding their evolution and variability among different branches of the tree of life can also provide insights into phylogenetic constraints on species resource requirements and ultimately on their local abundance and large-scale occurrence and vulnerability to environmental change. As our trait database includes a large component of resource requirements for all life-history stages it can also be used to aid conservation efforts by focusing on resources that may be limited for vulnerable species at small to large spatial scales. Additionally, the inclusion of behavioural traits within the database can contribute to increasing our understanding of the roles of behavioural characteristics in determining species occurrences and resource use.

We have minimised processing of the data within the state table of the database. Individual variables in this state table may have poor linear relationships or spurious negative correlations due to their statistical distributions and outlier effects which can constrain both phylogenetic and ecological analyses. Although fuzzy methods of multivariate analyses may accommodate these issues176 the processed multinomial and continuous variables with measures of variability provided in the traits table facilitates more conventional approaches to multivariate analyses. For some species there is missing data and some traits currently have more missing values than others. Whilst updating the database will supply some missing data there are imputation methods177,178 that can be used to predict these values and we are confident that in the absence of verified data, imputed data can be used to retain both species and traits with missing values within analyses.

References

  1. Devictor, V. et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Change 2, 121–124 (2012).

    ADS  Article  Google Scholar 

  2. Thomas, J. A. Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups. Philos. T. Roy. Soc B 360, 339–357 (2005).

    CAS  Article  Google Scholar 

  3. Wiemers, M. et al. An updated checklist of the European Butterflies (Lepidoptera, Papilionoidea). ZooKeys 811, 9–45 (2018).

    Article  Google Scholar 

  4. Dapporto, L. et al. Integrating three comprehensive data sets shows that mitochondrial DNA variation is linked to species traits and paleogeographic events in European butterflies. Mol. Ecol. Resour. 19, 1623–1636 (2019).

    CAS  PubMed  Article  Google Scholar 

  5. Wiemers, M., Chazot, N., Wheat, C., Schweiger, O. & Wahlberg, N. A complete time-calibrated multi-gene phylogeny of the European butterflies. ZooKeys 938, 897–124 (2020).

    Article  Google Scholar 

  6. Kudrna, O. et al. Distribution Atlas of Butterflies In Europe (Gesellschaft für Schmetterlingsschutz e.V., 2011).

  7. Settele J. et al. Climatic Risk Atlas Of European Butterflies. BioRisk 1 (Pensoft Publishers, 2008).

  8. Moretti, M. et al. Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Funct. Ecol. 31, 558–567 (2017).

    Article  Google Scholar 

  9. Balletto, E. & Kudrna, O. Some aspects of the conservation of butterflies in Italy, with recommendations for a future strategy (Lepidoptera, Hesperiidae and Papilionoidea). Boll. Soc. Entomol. Ital. 117, 39–59 (1985).

    Google Scholar 

  10. Schweiger, O., Harpke, A., Wiemers, M. & Settele, J. CLIMBER: Climatic niche characteristics of the butterflies in Europe. ZooKeys 367, 65–84 (2014).

    Article  Google Scholar 

  11. Kotiaho, J. S., Kaitala, V., Komonen, A. & Päivinen, J. Predicting the risk of extinction from shared ecological characteristics. P. Natl. Acad. Sci. USA 102, 1963–1967 (2005).

    ADS  CAS  Article  Google Scholar 

  12. Bubova, T., Kulma, M., Vrabec, V. & Nowicki, P. Adult longevity and its relationship with conservation status in European butterflies. J. Insect Conserv. 20, 1021–1032 (2016).

    Article  Google Scholar 

  13. Essens, T., van Langevelde, F., Vos, R. A., Van Swaay, C. A. & WallisDeVries, M. F. Ecological determinants of butterfly vulnerability across the European continent. J. Insect Conserv. 21, 439–450 (2017).

    Article  Google Scholar 

  14. Pöyry, J., Luoto, M., Heikkinen, R. K., Kuussaari, M. & Saarinen, K. Species traits explain recent range shifts of Finnish butterflies. Glob. Change Biol. 15, 732–743 (2009).

    ADS  Article  Google Scholar 

  15. Woodcock, B. A. et al. Identifying time lags in the restoration of grassland butterfly communities: A multi-site assessment. Biol. Conserv. 155, 50–58 (2012).

    Article  Google Scholar 

  16. Diamond, S. E., Frame, A. M., Martin, R. A. & Buckley, L. B. Species’ traits predict phenological responses to climate change in butterflies. Ecology 92, 1005–1012 (2011).

    PubMed  Article  Google Scholar 

  17. Schweiger, O. et al. Increasing range mismatching of interacting species under global change is related to their ecological characteristics. Glob. Ecol. Biogeogr. 21, 88–99 (2012).

    Article  Google Scholar 

  18. Fric, Z. F., Rindoš, M. & Konvička, M. Phenology responses of temperate butterflies to latitude depend on ecological traits. Ecol. Lets. 23, 172–180 (2020).

    Article  Google Scholar 

  19. Shreeve, T. G., Dennis, R. L. H., Roy, D. B. & Moss, D. An ecological classification of British butterflies: ecological attributes and biotope occupancy. J. Insect Conserv 5, 145–161 (2001).

    Article  Google Scholar 

  20. Pavlikova, A. & Konvička, M. An ecological classification of Central European macromoths: habitat associations and conservation status returned from life history attributes. J. Insect Conserv. 16, 187–206 (2012).

    Article  Google Scholar 

  21. Eskildsen, A. et al. Ecological specialization matters: long-term trends in butterfly species richness and assemblage composition depend on multiple functional traits. Divers. Distrib. 21, 792–802 (2015).

    Article  Google Scholar 

  22. Bonelli, S., Cerrato, C., Loglisci, N. & Balletto, E. Population extinctions in the Italian diurnal Lepidoptera: an analysis of possible causes. J. Insect Conserv. 15, 879–890 (2011).

    Article  Google Scholar 

  23. Middleton-Welling, J., Wade, R. A., Dennis, R. L. H., Dapporto, L. & Shreeve, T. G. Optimising trait and source selection for explaining occurrence and abundance changes: A case study using British butterflies. Funct. Ecol. 32, 1609–1619 (2018).

    Article  Google Scholar 

  24. Middleton-Welling, J. et al. Trait data of European and Maghreb butterflies. Dryad Digital Repository https://doi.org/10.5061/dryad.6m905qfx6 (2020).

  25. Dennis, R. L. H., Shreeve, T. G. & Van Dyck, H. Habitats and resources: the need for a resource-based definition to conserve butterflies. Biodivers. Conserv. 15, 1943–1966 (2006).

    Article  Google Scholar 

  26. Dennis, R. L. H. A Resource-Based Habitat View For Conservation: Butterflies In The British Landscape (John Wiley & Sons, 2010).

  27. Balletto, E., Barbero, F., Bonelli, S., Casacci, L. P., & Dapporto, L. Butterflies (Lepidoptera: Papilionoidea) Vol. I (Calderini, Verona, In Press).

  28. Beneš, J. et al. Butterflies Of The Czech Republic: Distribution and Conservation I & II (SOM, 2002).

  29. Bink, F. A. Ecologische Atlas Van De Dagvlinders An Noordwest-Europa (Schuyt & Co., 1992).

  30. Dapporto, L. & Casnati, O. Le Farfalle dell’Arcipelago Toscano (Parco Nazionale Arcipelago Toscano, 2008).

  31. Dennis, R. L. H. A Resource-based Habitat View For Conservation: Butterflies In The British Landscape (John Wiley & Sons, 2010).

  32. Fernández-Rubio, F. Guía De Mariposas Diurnas De La Península Ibérica, Baleares, Canarias, Azores y Madeira (Pirámide, 1991).

  33. García-Barros, E., Munguira, M. L., Stefanescu, C. & Vives, A. Fauna Iberica, Lepidoptera: Papilionoidea. Vol. 37 (Museo Nacional de Ciencias Naturales, CSIC, 2013).

  34. Henriksen, H. J. & Kreutzer, I. B. The Butterflies Of Scandinavia In Nature (Skandinavisk Bogforlag, 1982).

  35. Hesselbarth, G., Van Oorschot, H. & Wagener, S. Die Tagfalter Der Türkei: Unter Berücksichtigung Der Angrenzenden Länder. Bd. 2. Spezieller Teil: Nymphalidae. Fundortverzeichnis, Sammlerverzeichnis, Literaturverzeichnis, Indices (Wagener, 1995).

  36. Higgins, L. G. & Riley, N. D. A Field Guide To The Butterflies Of Britain And Europe 3rd Edn (Collins, 1980)

  37. Kudrna, O. A Revision Of The Genus Hipparchia (Classey, 1977).

  38. Lafranchis T. Butterflies Of Europe: New Field Guide And Key (Diatheo, 2004).

  39. Lafranchis, T. & Geniez, P. Les Papillons De Jour De France, Belgique Et Luxembourg Et Leurs Chenilles (Biotope Editions, 2000)

  40. Layberry, R. A., Hall, P. W. & Lafontaine, J. D. The Butterflies Of Canada (University of Toronto Press, 1998).

  41. LSPN. Les Papillons De Jour Et Leurs Biotopes (Pro Natura, 1987).

  42. Luquet, G. C. & Demerges, D. Papilions De Lannexe IV De La Directive 92/43/CEE. Papilio hospiton (Ministère de L’écologie Du Développement Et De L'Aménagement Durables, 2007).

  43. Maravalhas, E. As Borboletas De Portugal / The Butterflies of Portugal. (Apollo Books, 2003).

  44. Munguira, M. L., Barea-Azcón, J. M., Castro, S., Olivares, J. & Miteva, S. Species Recovery Plan For The Zullichis Blue (Agriades zullichi) (Butterfly Conservation Europe, 2015).

  45. Munguira, M. L., Castro, S, Barea-Azcón, J. M., Olivares, J. & Miteva, S. Species Recovery Plan For The Sierra Nevada Blue Polyommatus (Plebicula) golgus (Butterfly Conservation Europe, 2015).

  46. Munguira, M. L., Barea-Azcón, J. M, Castro,S., Olivares, J. & Miteva, S. Species Recovery Plan For the Andalusian Anomalous Blue (Polyommatus violetae) (Butterfly Conservation Europe, 2015).

  47. Munguira, M. L., Olivares, J,, Castro, S., Barea-Azcón, J. M., Romo, H. & Miteva, S. Species Recovery Plan For The Spanish Greenish Black-tip (Euchloe bazae) (Butterfly Conservation Europe, 2015).

  48. Muñoz Sariot, M. G., Biología Y Ecología De Los Licénidos eEspañoles. (Muñoz Sariot, 2011).

  49. Newland, D., Still, R., Swash, A. & Tomlinson, D. Britains Butterflies: A Field Guide To The Butterflies Of Britain And Ireland - Fuly Revised And Updated 3rd Edn (Princeton University Press, 2015).

  50. Pamperis, L. N. The Butterflies Of Greece (Bastas-Plessas Graphic Arts, 1997).

  51. Paolucci, P. Butterflies And Burnets Of The Alps And Their Larvae, Pupae and Cocoons (WBA-Books, 2013).

  52. Settele, J. et al. Climatic Risk Atlas Of European Butterflies (Pensoft, 2008).

  53. Settele, J., Steiner, R., Reinhardt, R., Feldmann, R. & Hermann, G. Schmetterlinge: Die Tagfalter Deutschlands (Ulmer, 2015)

  54. Thompson, R. & Nelson, B. The Butterflies And Moths Of Northern Ireland (Blackstaff Press, 2006).

  55. Tolman, T. & Lewington, R. Collins Butterfly Guide: The Most Complete Guide To The Butterflies Of Britain and Europe (Collins, 2008).

  56. Tshikolovets, V. V. Butterflies of Europe & The Mediterranean Area. (Tshikolovets Publications, 2011).

  57. Tutin, T. et al. Flora Europaea; Vol. 1–5 (Cambridge University Press, 1964-1980).

  58. Gilbert, F. & Zalat, S. Butterflies Of Egypt: Atlas, Red Data Listing And Conservation (BioMAP, 2007).

  59. Korshunov, Y. & Gorbunov, P. Dnevnye Bbabochki Aziatskoi Chasti Rossii. Spravochnik. [Butterflies of the Asian part of Russia. A handbook in Russian] (Ural University Press, 1995).

  60. F. Die Tagfalter Mitteleuropas - Östlicher Teil, Bestimmung - Biotope Und Bionomie - Verbreitung - Gefährdung (Self-published, 2004).

  61. Nekrutenko, Y. P. The Butterflies Of The Caucasus. Keys To Their Identification. Papilionidae, Pieridae, Satyridae, Danaidae (Dumka, 1990).

  62. Baytas A. A Field Guide To The Butterflies Of Turkey. (NTV, 2007).

  63. Aguiar, A. M. F., Wakeham-Dawson, A. & Jesus, J. G. F. The life cycle of the little known and endangered endemic Madeiran Brimstone Butterfly Gonepteryx maderensis Felder, 1862 (Pieridae). Nota Lep. 32, 145–157 (2009).

    Google Scholar 

  64. Aussem, B. & Hesselbarth, G. Die Praeimaginalstadien von Pseudochazara cingovskii (Gross, 1973) (Satyridae). Nota Lep. 3, 17–23 (1980).

    Google Scholar 

  65. Back, W. Die Praimaginalstadien von Euchloe charlonia (Donzel, 1842) im Vergleich tu Euchioe penia (FREYER, 1852) und Euchloe transcaspica ssp. amseli (Gross & Ebert, 1975). Atalanta 22, 357–363 (1991).

    Google Scholar 

  66. Bartonova, A., Benes, J. & Konvička, M. Generalist-specialist continuum and life history traits of Central European butterflies (Lepidoptera) – are we missing a part of the picture? Eur. J. Entomol. 111, 543–553 (2014).

    Article  Google Scholar 

  67. Bitzer, R. J. & Shaw, K. C. Territorial behavior of Nymphalis antiopa and Polygonia comma (Nymphalidae). J. Lepid. Soc. 37, 1–13 (1983).

    Google Scholar 

  68. Bonelli, S., Barbero, F., Casacci, L. P. & Balletto, E. Habitat preferences of Papilio alexanor Esper [1800]: implications for habitat management in the Italian Maritime Alps. Zoosystema 37, 169–177 (2015).

    Article  Google Scholar 

  69. Camerini, G., Groppali, R. & Minerbi, T. Observations on the ecology of the endangered butterfly Zerynthia cassandra in a protected area of Northern Italy. J. Insect Conser. 22, 41–49 (2018).

    Article  Google Scholar 

  70. Celik, T. Adult demography, spatial distribution and movements of Zerynthia polyxena (Lepidoptera: Papilionidae) in a dense network of permanent habitats. Eur. J. Entomol. 109, 217–227 (2013).

    Article  Google Scholar 

  71. Cho, Y., Choi, D. S., Han, Y. G. & Nam, S. H. Conservation of Hipparchia autonoe (Esper) (Lepidoptera: Nymphalidae), Natural Monument in South Korea. Entomol. Res. 41, 269–274 (2011).

    Article  Google Scholar 

  72. Corbera, G., Escrivà, À. & Corbera, J. Hilltopping de les Papallones diürnes al turó d’Onofre Arnau (Mataró, Maresme). L’Atzavarza 20, 59–68 (2011).

    Google Scholar 

  73. Courtney, S. Notes on the biology of Zegris eupheme (Pieridae). J. Lepid. Soc. 36, 132–135 (1982).

    Google Scholar 

  74. Dennis, R. L. H. & Shreeve, T. G. Does the Marbled White butterfly Melanargia galathea (L.) (Papilionoidea: Satyrinae) behave like a white’? Antenna 28, 139–194 (2004).

    Google Scholar 

  75. Dincă, V., Cuvelier, S., Zakharov, E. V., Hebert, P. D. & Vila, R. Biogeography, ecology and conservation of Erebia oeme (Hübner) in the Carpathians (Lepidoptera: Nymphalidae: Satyrinae). Ann. Soc. Entomol. Fr. 46, 486–498 (2010).

    Article  Google Scholar 

  76. Dincă, V., Kolev, Z. & Verovnik, R. The distribution, ecology and conservation status of the Spinose Skipper Muschampia cribrellum (Eversmann, 1841) at the western limit of its range in Europe (Hesperiidae). Nota Lep. 33, 39–57 (2010).

    Google Scholar 

  77. Diringer, Y. Chronique d’élevage 3: L’élevage des coridon espagnols: Polyommatus (Lysandra) albicans (HERRICH-SCHÄFFER, 1852) et Polyommatus (Lysandra) caelestissima (VERITY, 1921) (Lepidoptera: Lycanidae). Lépidoptères 19, 50–59 (2010).

    Google Scholar 

  78. Eichel, S. & Fartmann, T. Management of calcareous grasslands for Nickerl’s fritillary (Melitaea aurelia) has to consider habitat requirements of the immature stages, isolation, and patch area. J. Insect Conserv. 12, 677–688 (2008).

    Article  Google Scholar 

  79. Fiedler, K. European and North West African Lycaenidae (Lepidoptera) and their associations with ants. J. Res. Lepid. 28, 239–257 (1991).

    Google Scholar 

  80. Fric, Z. Adult population structure and behaviour of two seasonal generations of the European Map Butterfly, Araschnia levana, species with seasonal polyphenism (Nymphalidae). Nota Lep. 23, 2–25 (2000).

    Google Scholar 

  81. Friedrich, E. Zur Biologie von Limenitis populi L. (Lep., Nymphalidae). Entomol. Z. 81, 266–269 (1971).

    Google Scholar 

  82. García-Barros, E. Comparative data on the adult biology, ecology and behaviour of species belonging to the genera Hipparchia, Chazara and Kanetisa in central Spain (Nymphalidae: Satyrinae). Nota Lep. 23, 119–140 (2000).

    Google Scholar 

  83. García-Villanueva, V., Moreno Tamaurejo, J. A., Vazquez Prado, F. M., Nieto Manzano, M. A. & Novoa Pérez, J. M. Melitaea aetherie (Hübner [6]) en la provincia de Badajoz: nuevos datos sobre su biología y distribución (Lepidoptera: Nymphalidae). Bol. Soc. Entomol. Aragonesa 42, 279–288 (2008).

    Google Scholar 

  84. Gascoigne-Pees, M., Trew, D., Pateman, J. & Verovnik, R. The distribution, life cycle, ecology and present status of Leptidea morsei (Fenton 1882) in Slovenia with additional observations from Romania (Lepidoptera: Pieridae). Nachr. Entomol. Ver. Apollo N. F. 29, 113–121 (2008).

    Google Scholar 

  85. Gascoigne-Pees, M., Verovnik, R., Wiskin, C. & Luckens, C. & Đurić, M. Notes on the lifecycle of Melitaea arduinna (Esper, 1783) (“Freyer’s Fritillary”) (Lepidoptera: Nymphalidae) with further records from SE Serbia. Nachr. Entomol. Ver. Apollo, N. F. 33, 9–14 (2012).

    Google Scholar 

  86. Gascoigne-Pees, M., Verovnik, R., Franeta, F. & Popović, M. The lifecycle and ecology of Pseudochazara amymone (Brown, 1976), (Lepidoptera: Nymphalidae, Satyrinae). Nachr. Entomol. Ver. Apollo, N. F. 35, 129–138 (2014).

    Google Scholar 

  87. Gascoigne-Pees, M., Wiskin, C., Đurić, M. & Trew, D. The lifecycle of Nymphalis vaualbum ([Denis & Schiffermüller], 1775) in Serbia including new records and a review of its present status in Europe (Lepidoptera: Nymphalidae. Nachr. Entomol. Ver. Apollo, N. F. 35, 77–96 (2014).

    Google Scholar 

  88. Grill, A., Schtickzelle, N., Cleary, D. F., Neve, G. & Menken, S. B. Ecological differentiation between the Sardinian endemic Maniola nurag and the pan-European M. jurtina. Biol. J. Linn. Soc. 89, 561–574 (2006).

    Article  Google Scholar 

  89. Hernández-Roldán, J. L., Vicente, J. C., Vila, R. & Munguira, M. L. Natural history and immature stage morphology of Spialia Swinhoe, 1912 in the Iberian Peninsula (Lepidoptera, Hesperiidae). Nota Lep. 41, 1–22 (2018).

    Google Scholar 

  90. Hernández-Roldán, J. L., Munguira, M. L. & Martin, J. Ecology of a relict population of the vulnerable butterfly Pyrgus sidae on the Iberian Peninsula (Lepidoptera: Hesperiidae). Eur. J. Entomol. 106, 611–618 (2009).

    Article  Google Scholar 

  91. John, E. & Parker, R. Dispersal of Hipparchia cypriensis (Holik, 1949) (Lep.: Satyridae) in Cyprus, with notes on its ecology and life-history. Ent. Gaz. 53, 3–18 (2002).

    Google Scholar 

  92. John, E., Gascoigne-Pees, M. & Larsen, T. B. Ypthima asterope (Klug, 1832) (Lepidoptera: Nymphalidae, Satyrinae): its biogeography, lifecycle, ecology and present status in Cyprus, with additional notes from Rhodes and the eastern Mediterranean. Ent. Gaz. 61, 1–22 (2010).

    Google Scholar 

  93. Jutzeler, D. Okologie und erste Stände des italienischen Schachbrettes Melanargia arge (Sulzer, 1776) (Lepidoptera: Satyridae). Nota Lep. 16, 213–232 (1994).

    Google Scholar 

  94. Jutzeler, D. & Grillo, N. Une visite a l’ile de Vulcano (dans les iles Eoliennes, Sicile) pour Hipparchia leighebi (Kudrna, 1976) (Lepidoptera: Nymphalidae, Satyrinae). Linn. Belg. 15, 119–126 (1995).

    Google Scholar 

  95. Jutzeler, D. & De Bros, E. Observations dans la nature et élevage de Pseudochazara hippolyte williamsi (Romei, 1927) et Erebia hiapania (Butler, 1868) de la Sierra Nevada (Andalousie, Espagne méridionale) (Lepidoptera: Nymphalidae, Satyrinae). Linn. Belg. 15, 173–181 (1995).

    Google Scholar 

  96. Jutzeler, D., Biermann, H. & De Bros, E. Élevage de Coenonympha corinna elbana (Staudinger, 1901) du Monte Argentario (Toscane, Italie) avec explication géologique de l’aire de répartition du complexe corinna (Lepidoptera: Nymphalidae, Satyrinae). Linn. Belg. 15, 332–347 (1996).

    Google Scholar 

  97. Jutzeler, D. & de Bros, E. D. Écologie, élevage et statut taxinomique de Coenonympha corinna trettaui (GROSS, 1970) de l’Isola di Capraia (Toscane, Italie) (Lepidoptera: Nymphalidae, Satyrinae). Linn. Belg. 16, 70–78 (1997).

    Google Scholar 

  98. Jutzeler, D. et al. Study on the biology, morphology and etiology of Hipparchia sbordonii Kudrna, 1984 from Isola di Ponza (Latium, Italy) and Hipparchia neapolitana (Stauder, 1921) from the Monte Faito (Campanie, Italy) and data on the biology of Hipparchia leighebi (Kudrna, 1976) (Lepidoptera: Nymphalidae, Satyrinae). Linn. Belg. 16, 105–132 (1997).

    Google Scholar 

  99. Jutzeler, D., Biermann, H., Grillo, N. & Volpe, G. On the taxonomical status of Hipparchia blachieri (Fruhstorfer, 1908) from Sicilia (Lepidoptera: Nymphalidae, Satyrinae). Linn. Belg. 17, 69–83 (1999).

    Google Scholar 

  100. Jutzeler, D., Embacher, G., Hesselbarth, G., Malicky, M., Stangelmaier, G. & Cameron-Curry, V. Breeding experiments with Erebia claudina (Borkhausen, 1779) from the Radstaedter Tauern (Salzburg, Austria) (Lepidoptera: Nymphalidae, Satyrinae. Linn. Belg. 17, 11–21 (1999).

    Google Scholar 

  101. Jutzeler, D., Russel, P. & Volpe, G. Nouveaux points de vue sur la position taxonomique des cinq populations insulaires du complexe d’ Hipparchia wyssii Christ (1889) se basant sur la connaissance de leurs états pré-imaginaux (Lepidoptera: Nymphalidae, Satyrinae). Linn. Belg. 20, 9–44 (2007).

    Google Scholar 

  102. Kleckova, I., Konvička, M. & Klecka, J. Thermoregulation and microhabitat use in mountain butterflies of the genus Erebia: importance of fine-scale habitat heterogeneity. J. Therm. Biol. 41, 50–58 (2014).

    PubMed  Article  Google Scholar 

  103. Koestler, W. The preimaginal stages of Hipparchia mersina Staudinger, 1871 - biology, ecology, phenology and breeding Lepidoptera Nymphalidae. Entomol. Z. 1152, 85–90 (2005).

    Google Scholar 

  104. Kolev, Z. New data on the taxonomic status and distribution of Polyommatus andronicus Coutsis & Ghavalas, 1995 (Lycaenidae). Nota Lep. 28, 35–48 (2005).

    Google Scholar 

  105. Konvička, M., Nedved, O. & Fric, Z. Early-spring floods decrease the survival of hibernating larvae of a wetland-inhabiting population of Neptis rivularis (Lepidoptera: Nymphalidae). Acta Zool. Acad. Sci. Hungar. 48, 79–88 (2002).

    Google Scholar 

  106. Kuras, T., Beneš, J. & Konvička, M. Behaviour and within-habitat distribution of adult Erebia sudetica sudetica, endemic of the Hrubý Jeseník Mts., Czech Republic (Nymphalidae, Satyrinae). Nota Lep. 24, 69–83 (2001).

    Google Scholar 

  107. Lafranchis, T. Biologie, écologie et répartition de Carcharodus orientalis (Reverdin, 1913) en Grèce. Comparaison avec Carcharodus flocciferus (Zeller, 1847) (Lepidoptera, Hesperiidae). Linn. Belg. 19, 140-146 (2003).

  108. Leigheb, G., Jutzeler, D. & Cameron Curry, V. The breeding of Pseudophilotes barbagiae De Prins & Van Der Poorten, 1970, an endemic species of the Gennargentu massif, Sardinia, Italy (Lepidoptera: Lycaenidae). Linn. Belg. 17, 239–246 (2000).

    Google Scholar 

  109. Lopez-Villalta, J. S. Ecological trends in endemic Mediterranean butterflies. Bull. Insectol. 63, 161–170 (2010).

    Google Scholar 

  110. Leigheb, G. & Cameron-Curry, V. Observations on the biology and distribution of Pseudophilotes barbagiae (Lycaenidae, Polyommatini). Nota Lep. 21, 66–73 (1998).

    Google Scholar 

  111. Leigheb, G., Jutzeler, D. & Cameron Curry, V. The breeding of Pseudophilotes barbagiae De Prins & Van Der Poorten, 1970, an endemic species of the Gennargentu massif, Sardinia, Italy (Lepidoptera: Lycaenidae). Linn. Belg. 17, 239–246 (2000).

    Google Scholar 

  112. Manino, Z., Leigheb, G., Cameron-Curry, P. & Cameron-Curry, V. Descrizione degli stadi preimarginali di Agrodiaetus humedasae Toso & Balletto, 1976 (Lepidoptera, Lycaenidae). Boll. Mus. Reg. Sci. Nat. Torino 5, 97–101 (1987).

    Google Scholar 

  113. Möllenbeck, V., Hermann, G. & Fartmann, T. Does prescribed burning mean a threat to the rare satyrine butterfly Hipparchia fagi? Larval-habitat preferences give the answer. J. Insect Conser. 13, 77–87 (2009).

    Article  Google Scholar 

  114. Nardelli, U., Olivares, J. & Jutzeler, D. Etudes sur l’ecologie et le developpement de Melanargia ines (Hoffmannsegg, 1804) en Andalousie et comparaison avec les especes les plus proches (Lepidoptera: Nymphalidae, Satyrinae). Linn. Belg. 16, 183–191 (1998).

    Google Scholar 

  115. Ômura, H. & Honda, K. Feeding responses of adult butterflies, Nymphalis xanthomelas, Kaniska canace and Vanessa indica, to components in tree sap and rotting fruits: synergistic effects of ethanol and acetic acid on sugar responsiveness. J. Insect Physiol. 49, 1031–1038 (2003).

    PubMed  Article  CAS  Google Scholar 

  116. Özden, Ö. & Hodgson, D. J. Butterflies (Lepidoptera) highlight the ecological value of shrubland and grassland mosaics in Cypriot garrigue ecosystems. Eur. J. Entomol. 108, 43–437 (2011).

    Article  Google Scholar 

  117. Page, R. J. C. Perching and patrolling continuum at favoured hilltop sites on a ridge: A mate location strategy by the Purple Emperor butterfly Apatura iris. Entomol. Rec. J. Var. 22, 61–70 (2010).

    Google Scholar 

  118. Pennekamp, F., Monteiro, E. & Schmitt, T. The larval ecology of the butterfly Euphydryas desfontainii (Lepidoptera: Nymphalidae) in SW-Portugal: food plant quantity and quality as main predictors of habitat quality. J. Insect Conserv. 17, 195–206 (2013).

    Article  Google Scholar 

  119. Pinzari, M. A comparative analysis of mating recognition signals in graylings: Hipparchia statilinus vs. H. semele (Lepidoptera: Nymphalidae, Satyrinae). J. Insect Behav. 22, 227–244 (2009).

    Article  Google Scholar 

  120. Pinzari, M. & Sbordoni, V. Species and mate recognition in two sympatric Grayling butterflies: Hipparchia fagi and H. hermione genava (Lepidoptera). Ethol. Ecol. Evol. 25, 28–51 (2013).

    Article  Google Scholar 

  121. Pittaway, A. R. et al. Papilio saharae Oberthür, 1879, specifically distinct from Papilio machaon Linnaeus, 1758 (Lepidoptera: Papilionidae). Ent. Gaz. 45, 223–249 (1994).

    Google Scholar 

  122. Polcyn, D. M. & Chappell, M. A. Analysis of heat transfer in Vanessa butterflies: effects of wing position and orientation to wind and light. Physiol. Zool. 59, 706–716 (1986).

    Article  Google Scholar 

  123. Radchuk, V., Turlure, C. & Schtickzelle, N. Each life stage matters: the importance of assessing the response to climate change over the complete life cycle in butterflies. J Anim. Ecol. 82, 275–285 (2013).

    PubMed  Article  Google Scholar 

  124. Rutowski, R. L. Variation of eye size in butterflies: inter-and intraspecific patterns. J. Zool. 252, 187–195 (2000).

    Article  Google Scholar 

  125. Sariot, M. M. Ciclo biológico, morfología de los estadios preimaginales y nuevos datos sobre la distribución de Borbo borbonica zelleri (Lederer, 1855) (Lepidoptera: Hesperiidae) en la provincia de Cádiz, Españ. Rev. Gaditana Entomol. 4, 137–158 (2013).

    Google Scholar 

  126. Scott, J. A. Population biology and adult behavior of the circumpolar butterfly, Parnassius phoebus F. (Papilionidae). Insect Syst. Evol. 4, iii–168 (1974).

  127. Schurian, K. Beobachtungen zur Biologie und Ökologie von Azanus ubaldus (Cramer, 1782) auf den Kanarischen Inseln (Lepidoptera: Lycaenidae). Nachr. Entomol. Ver. Apollo, N.F. 37, 41–46 (2016).

    Google Scholar 

  128. Slamova, I., Klecka, J. & Konvička, M. Diurnal behavior and habitat preferences of Erebia aethiops, an aberrant lowland species of a mountain butterfly clade. J. Insect Behav. 24, 230–246 (2011).

    Article  Google Scholar 

  129. Slancarova, J., Garcia-Pereira, P., Fric, Z. F., Romo, H. & Garcia-Barros, E. Butterflies in Portuguese ‘montados’: relationships between climate, land use and life-history traits. J. Insect Conserv. 19, 823–836 (2015).

    Article  Google Scholar 

  130. Slancarova, J. et al. Co-occurrence of three Aristolochia-feeding Papilionids (Archon apollinus, Zerynthia polyxena and Zerynthia cerisyi) in Greek Thrace. J. Nat. Hist. 49, 1825–1848 (2015).

    Article  Google Scholar 

  131. Stefanescu, C., Pintureau, B., Tschorsnig, H. P. & Pujade-Villar, J. The parasitoid complex of the butterfly Iphiclides podalirius feisthamelii (Lepidoptera: Papilionidae) in north-east Spain. J. Nat. Hist. 7, 379–396 (2003).

    Article  Google Scholar 

  132. Stuhldreher, G. & Fartmann, T. Oviposition-site preferences of a declining butterfly Erebia medusa (Lepidoptera: Satyrinae) in nutrient-poor grasslands. Eur. J. Entomol. 112, 493–499 (2015).

    Article  Google Scholar 

  133. Szentirmai, I. et al. Habitat use and population biology of the Danube Clouded Yellow butterfly Colias myrmidone (Lepidoptera: Pieridae) in Romania. J. Insect Conserv. 18, 417–425 (2014).

    Article  Google Scholar 

  134. Templado, J. Datos biológicos sobre Melitaea deione (Geyer) (Lep., Nymphalidae). Bol. Estac. Cent.l Ecol. 5, 97–102 (1976).

    Google Scholar 

  135. Toso, G. G. & Balletto, E. Una nuova specie del genere Agrodiaetus Hübn. (Lepidoptera, Lycaenidae). Annali Mus. Civico Storia Nat. G. Doria 81, 124–130 (1977).

    Google Scholar 

  136. Tóth, J. P. & Varga, Z. Morphometric study on the genitalia of sibling species Melitaea phoebe and M. telona (Lepidoptera: Nymphalidae). Acta Zool. Hung. 56, 273–282 (2010).

    Google Scholar 

  137. Tvrtkovic, N., Mihoci, I. & Sasic, M. Colias caucasica balcanica Rebel, 1901 (Pieridae) in Croatia-the most western distribution point. Natura Croatica 20, 375–385 (2011).

    Google Scholar 

  138. Väisänen, R., Kuussaari, M., Nieminen, M. & Somerma, P. Biology and conservation of Pseudophilotes baton in Finland (Lepidoptera, Lycaenidae). Ann. Zool. Fenn. 31, 145–156 (1994).

    Google Scholar 

  139. Verovnik, R. et al. Conserving Europe’s Most Endangered Butterfly: the Macedonian Grayling (Pseudochazara cingovskii). J. Insect Conserv. 17, 941–947 (2013).

    Article  Google Scholar 

  140. Verovnik, R., Franeta, F., Popović, M. & Gascoigne-Pees, M. The discovery of Polyommatus aroaniensis (Brown, 1976) in Bosnia and Herzegovina (Lepidoptera: Lycaenidae). Nachr. Entomol. Ver. Apollo, N.F. 36, 177–180 (2015).

    Google Scholar 

  141. Vieira, V. Lepidopteran fauna from the Sal Island, Cape Verde (Insecta: Lepidoptera). SHILAP-Rev. Lepidopt. 6, 243–252 (2008).

    Google Scholar 

  142. Vila, R. Comparative analysis and taxonomic use of the morphology of imma-ture stages and natural history traits in European species of Pyrgus Hübner (Lepidoptera: Hesperiidae, Pyrginae). Zootaxa 347, 1–71 (2012).

    Google Scholar 

  143. Vovlas, A., Balletto, E., Altini, E., Clemente, D. & Bonelli, S. Mobility and oviposition site-selection in Zerynthia cassandra (Lepidoptera, Papilionidae): implications for its conservation. J. Insect Conserv. 18, 87–597 (2014).

    Article  Google Scholar 

  144. Wahlberg, N. The life history and ecology of Melitaea diamina (Nymphalidae) in Finland. Nota Lep. 20, 70–81 (1997).

    Google Scholar 

  145. Wahlberg, N. Comparative descriptions of the immature stages and ecology of five Finnish Melitaeine butterfly species (Lepidoptera: Nymphalidae). Entomol. Fennica 11, 167–174 (2000).

    Article  Google Scholar 

  146. Wahlberg, N. On the status of the scarce fritillary Euphydryas maturna (Lepidoptera: Nymphalidae) in Finland. Entomol. Fennica 12, 244–250 (2001).

    Google Scholar 

  147. Wiemers, M. The butterflies of the Canary Islands. A survey on their distribution, biology and ecology (Lepidoptera: Papilionoidea and Hesperioidea). Linn. Belg. 15, 63–84 (1995).

    Google Scholar 

  148. Franeta, F., Kogovšek, N. & Verovnik, R. On the presence of Pontia chloridice (Lepidoptera: Pieridae) in the Republic of Macedonia. Phegea 40, 17–20 (2012).

    Google Scholar 

  149. Franeta, F. & Đurić, M. On the distribution of Colias caucasica balcanica Rebel, 1901, with two new records for Serbia (Lepidoptera: Pieridae. Nachr. Entomol. Ver. Apollo, N.F. 32, 31–37 (2011).

    Google Scholar 

  150. Coutsis, J. Revision of the Turanana endymion species-group (Lycaenidae). Nota Lep. 27, 251–272 (2005).

    Google Scholar 

  151. Acosta Fernández, B. Una nueva subespecie de Euchloe belemia (Esper, [1800]) de la isla de Gran Canaria, Islas Canarias, España (Lepidoptera: Pieridae). SHILAP-Rev. Lepidopt. 36, 173–182 (2008).

    Google Scholar 

  152. Brown, J. & Coutsis, J. G. Two newly discovered Lycaenid butterflies (Lepidoptera: Lycaenidae) from Greece, with notes on allied species. Entomol. Gaz. 29, 201–213 (1978).

    Google Scholar 

  153. Brown, J. On the status of a little known Satyrid butterfly from Greece. Entomol. Rec. J. Var. 92, 280–281 (1980).

    Google Scholar 

  154. De Prins, W. & Van der Poorten, D. Een nieuwe Pseudochazara-soort voor de wetenschap uit Noordoost-Griekenland (Lepidoptera, Satyridae). Phegea 10, 7–21 (1981).

    Google Scholar 

  155. De Prins, W. & Van der Poorten, D. Overzicht van het genus Pseudophilotes in Europa en Noord-Afrika, met beschrijving van een soort uit Sardinie, nieuw voor de wetenschap (Lepidoptera, Lycaenidae). Phegea 10, 61–76 (1982).

    Google Scholar 

  156. Higgins, L. G. Hipparchia (Pseudotergumia) wyssii Christoph, with descriptions of two new subspecies. Entomol. 100, 169–171 (1967).

    Google Scholar 

  157. Kolev, Z. Polyommatus dantchenkoi (Lukhtanov & Wiemers, 2003) tentatively identified as new to Europe, with a description of a new taxon from the Balkan Peninsula (Lycaenidae). Nota Lep. 28, 25–34 (2005).

    Google Scholar 

  158. Manil, L. Découverte de Hipparchia (Pseudotergumia) wyssii Christ dans l’île de La Palma (Canaries) et description d’une nouvelle sous-espèce: Hipparchia wyssii tilosi nova spp. (Lepidoptera Satyridae). Linn. Belg. 9, 359–366 (1984).

    Google Scholar 

  159. Olivier, A. & Coutsis, J. G. A revision of the superspecies Hipparchia azorina and of the Hipparchia aristaeus group (Nymphalidae: Satyrinae). Nota Lep. 20, 150–292 (1997).

    Google Scholar 

  160. Olivier, A. Taxonomy and geographical variation of Satyrium ledereri (Boisduval, 1848) with the description of a new subspecies from the Greek island of Sámos. Phegea 17, 1–25 (1989).

    Google Scholar 

  161. Smith, D. A. S. & Owen, D. F. Inter-island variation in the butterfly Hipparchia (Pseudotergumia) wyssii (Christ, 1889) (Lepidoptera, Satyrinae) in the Canary Islands. Nota Lep. 17, 175–200 (1995).

    Google Scholar 

  162. Thomson, G. Maniola chia - a new Satyrid from the Greek island of Chios (Lepidoptera: Nymphalidae: Satyrinae). Phegea 15, 13–22 (1987).

    Google Scholar 

  163. Thomson, G. Maniola halicarnassus - a new Satyrid from south-western Turkey (Lepidoptera: Nymphalidae: Satyrinae). Phegea 18, 149–155 (1990).

    Google Scholar 

  164. Scalercio, S. et al. How long is 3km for a butterfly? Ecological constraints and functional traits explain high mitochondrial genetic diversity between Sicily and the Italian Peninsula. J. Anim. Ecol., https://doi.org/10.1111/1365-2656.13196 (2020).

  165. Cini, A. et al. Host plant selection and differential survival on two Aristolochia L. species in an insular population of Zerynthia cassandra. J Insect Conserv 23, 239–246 (2019).

    Article  Google Scholar 

  166. Hernández‐Roldán, J. L. et al. Integrative analyses unveil speciation linked to host plant shift in Spialia butterflies. Mol Ecol. 25, 4267–4284 (2016).

    PubMed  Article  Google Scholar 

  167. Dennis, R. L. H., Hardy, P. B. & Dapporto, L. Nestedness in island faunas: novel insights into island biogeography through butterfly community profiles of colonization ability and migration capacity. J Biogeogr 39, 1412–1426 (2012).

    Article  Google Scholar 

  168. Sekar, S. A meta analysis of the traits affecting dispersal ability in butterflies: can wingspan be used as a proxy? J. Anim. Ecol. 81, 174–184 (2012).

    PubMed  Article  Google Scholar 

  169. Kuussaari, M., Saarinen, M., Korpela, E. L., Pöyry, J. & Hyvönen, T. Higher mobility of butterflies than moths connected to habitat suitability and body size in a release experiment. Ecol. Evol. 4, 3800–381 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  170. García-Barros, E. Body size, egg size, and their interspecific relationships with ecological and life history traits in butterflies (Lepidoptera: Papilionoidea, Hesperioidea). Biol. J. Linn. Soc. 70, 251–284 (2000).

    Article  Google Scholar 

  171. Wiklund, C. & Kaitala, A. Sexual selection for large male size in a polyandrous butterfly: the effect of body size on male versus female reproductive success in Pieris napi. Behav. Ecol. 6, 6–13 (1995).

    Article  Google Scholar 

  172. Peters, R. H. The Ecological Implications Of Body Size. (Cambridge University Press, 1983).

  173. Chown, S. L. et al. Scaling of insect metabolic rate is inconsistent with the nutrient supply network model. Funct. Ecol. 21, 282–290 (2007).

    Article  Google Scholar 

  174. Betzholtz, P. E., Pettersson, L. B., Ryrholm, N. & Franzén, M. With that diet, you will go far: trait-based analysis reveals a link between rapid range expansion and a nitrogen-favoured diet. Proc. Roy. Soc. B 280, 20122305 (2013).

    Article  Google Scholar 

  175. Cayton, H. L., Haddad, N. M., Gross, K., Diamond, S. E. & Ries, L. Do growing degree days predict phenology across butterfly species? Ecology 96, 1473–147 (2015).

    Article  Google Scholar 

  176. Chevenne, F., Doleadec, S. & Chessel, D. A fuzzy coding approach for the analysis of long‐term ecological data. Freshwater Biol. 31, 295–309 (1994).

    Article  Google Scholar 

  177. Penone, C. et al. Imputation of missing data in life-history trait datasets: which approach performs the best? Methods Ecol. Evol. 5, 961–970 (2014).

    Article  Google Scholar 

  178. Stekhoven, D. J. & Bühlmann, P. Missforest – non-parametric missing value imputation for mixed-type data. Bioinformatics 28, 112–118 (2012).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

We thank András Ambrus, Ivan Bolotov, Andrea Grill, Frank Pennekamp, and János Pál Tóth who kindly provided unpublished observational data on species of interest. This paper is an output from two sECURE workshops kindly supported by sDiv, the Synthesis Centre of the German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig (DFG FZT 118; WG 4.28 sECURE).

Author information

Authors and Affiliations

Authors

Contributions

J.M.W. and T.S. conceptualised an initial version of the database. M.W., O.S., E.G.B., L.D. and S.B. suggested expansions and assisted in conceptualizing the full version of the database. J.M.W., L.D., P.N., E.P., T.S. and E.G.B. extracted trait information from sources. J.M.W., L.D., S.B., M.Z., T.S. and E.G.B. contributed trait information. M.W., L.D. and T.S. assisted with standardising the nomenclature of the species names included in the database. J.M.W. and T.S. wrote the first draft of the manuscript. All authors contributed to the writing, editing and proofing of the manuscript and all approved the final version submitted.

Corresponding author

Correspondence to Tim Shreeve.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Online-only Tables

Online-only Table 1 Traits included in the raw ‘state table’ of the database for the European and Maghreb butterflies.
Online-only Table 2 The 31 trait states included in the coded trait database.(traits table).

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ applies to the metadata files associated with this article.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Middleton-Welling, J., Dapporto, L., García-Barros, E. et al. A new comprehensive trait database of European and Maghreb butterflies, Papilionoidea. Sci Data 7, 351 (2020). https://doi.org/10.1038/s41597-020-00697-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41597-020-00697-7

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing