Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Surface photovoltage microscopy for mapping charge separation on photocatalyst particles

Abstract

Solar-driven photocatalytic reactions offer a promising route to clean and sustainable energy, and the spatial separation of photogenerated charges on the photocatalyst surface is the key to determining photocatalytic efficiency. However, probing the charge-separation properties of photocatalysts is a formidable challenge because of the spatially heterogeneous microstructures, complicated charge-separation mechanisms and lack of sensitivity for detecting the low density of separated photogenerated charges. Recently, we developed surface photovoltage microscopy (SPVM) with high spatial and energy resolution that enables the direct mapping of surface-charge distributions and quantitative assessment of the charge-separation properties of photocatalysts at the nanoscale, potentially providing unprecedented insights into photocatalytic charge-separation processes. Here, this protocol presents detailed procedures that enable researchers to construct the SPVM instruments by integrating Kelvin probe force microscopy with an illumination system and the modulated surface photovoltage (SPV) approach. It then describes in detail how to perform SPVM measurements on actual photocatalyst particles, including sample preparation, tuning of the microscope, adjustment of the illuminated light path, acquisition of SPVM images and measurements of spatially resolved modulated SPV signals. Moreover, the protocol also includes sophisticated data analysis that can guide non-experts in understanding the microscopic charge-separation mechanisms. The measurements are ordinarily performed on photocatalysts with a conducting substrate in gases or vacuum and can be completed in 15 h.

Key points

  • Probing the charge-separation properties of photocatalysts is a formidable challenge because of the spatially heterogeneous microstructures, complicated charge-separation mechanisms and low density of separated photogenerated charges.

  • Surface photovoltage microscopy as described in this protocol has sufficiently high spatial and energy resolution to enable direct mapping of surface-charge distributions and quantitative assessment of the charge-separation properties of individual photocatalyst particles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principle of SPV measurements with KPFM.
Fig. 2: Time limitations of SPVM and the alternative approaches.
Fig. 3: SPV measurements on the femtosecond–second timescales to track holistic charge-transfer processes on photocatalyst particles.
Fig. 4: Comparison between AM and FM mode KPFM for imaging of photocatalyst particles.
Fig. 5: Schematic diagram of the SPVM system.
Fig. 6: Schematic diagram of the light system assembly and its individual components.
Fig. 7: Comparison of modulated SPV signals with CPD signals in accuracy and sensitivity.
Fig. 8: Identification of multiple charge-separation processes.
Fig. 9: Focusing light on photocatalyst particles.
Fig. 10: Charge separation via asymmetric illumination in Cu2O photocatalyst particles as revealed by SPVM.
Fig. 11: Anisotropic charge separation via built-in electric field.
Fig. 12: Efficient charge separation via anisotropic defects.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are available at https://figshare.com/ (https://doi.org/10.6084/m9.figshare.24466933.v1) or from the corresponding author upon reasonable request.

References

  1. Tachibana, Y., Vayssieres, L. & Durrant, J. R. Artificial photosynthesis for solar water-splitting. Nat. Photonics 6, 511–518 (2012).

    Article  CAS  Google Scholar 

  2. Lewis, N. S. Research opportunities to advance solar energy utilization. Science 351, aad1920 (2016).

    Article  PubMed  Google Scholar 

  3. Wang, Q. et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat. Mater. 15, 611–615 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Chen, S., Takata, T. & Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2, 17050 (2017).

    Article  CAS  Google Scholar 

  5. Hisatomi, T. & Domen, K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat. Catal. 2, 387–399 (2019).

    Article  CAS  Google Scholar 

  6. Nishiyama, H. et al. Photocatalytic solar hydrogen production from water on a 100-m2 scale. Nature 598, 304–307 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Zhou, P. et al. Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting. Nature 613, 66–70 (2023).

    Article  CAS  PubMed  Google Scholar 

  8. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

    Article  CAS  PubMed  Google Scholar 

  9. Baxter, J. B., Richter, C. & Schmuttenmaer, C. A. Ultrafast carrier dynamics in nanostructures for solar fuels. Annu. Rev. Phys. Chem. 65, 423–447 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Corby, S., Rao, R. R., Steier, L. & Durrant, J. R. The kinetics of metal oxide photoanodes from charge generation to catalysis. Nat. Rev. Mater. 6, 1136–1155 (2021).

    Article  CAS  Google Scholar 

  11. Chen, R., Fan, F. & Li, C. Unraveling charge-separation mechanisms in photocatalyst particles by spatially resolved surface photovoltage techniques. Angew. Chem. Int. Ed. Engl. 61, e202117567 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Wang, D., Sheng, T., Chen, J., Wang, H.-F. & Hu, P. Identifying the key obstacle in photocatalytic oxygen evolution on rutile TiO2. Nat. Catal. 1, 291–299 (2018).

    Article  CAS  Google Scholar 

  13. Chen, R., Fan, F., Dittrich, T. & Li, C. Imaging photogenerated charge carriers on surfaces and interfaces of photocatalysts with surface photovoltage microscopy. Chem. Soc. Rev. 47, 8238–8262 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Zhu, J. et al. Direct imaging of highly anisotropic photogenerated charge separations on different facets of a single BiVO4 photocatalyst. Angew. Chem. Int. Ed. Engl. 54, 9111–9114 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Zhu, J. et al. Visualizing the nano cocatalyst aligned electric fields on single photocatalyst particles. Nano Lett. 17, 6735–6741 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Chen, R. et al. Charge separation via asymmetric illumination in photocatalytic Cu2O particles. Nat. Energy 3, 655–663 (2018).

    Article  CAS  Google Scholar 

  17. Chen, R. et al. Spatiotemporal imaging of charge transfer in photocatalyst particles. Nature 610, 296–301 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Li, R. et al. Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4. Nat. Commun. 4, 1432 (2013).

    Article  PubMed  Google Scholar 

  19. Wang, S., Liu, G. & Wang, L. Crystal facet engineering of photoelectrodes for photoelectrochemical water splitting. Chem. Rev. 119, 5192–5247 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Takata, T. et al. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 581, 411–414 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Wang, X. et al. Trap states and carrier dynamics of TiO2 studied by photoluminescence spectroscopy under weak excitation condition. Phys. Chem. Chem. Phys. 12, 7083–7090 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Mesa, C. A. et al. Multihole water oxidation catalysis on haematite photoanodes revealed by operando spectroelectrochemistry and DFT. Nat. Chem. 12, 82–89 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Yang, Y. et al. Semiconductor interfacial carrier dynamics via photoinduced electric fields. Science 350, 1061–1065 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Carneiro, L. M. et al. Excitation-wavelength-dependent small polaron trapping of photoexcited carriers in alpha-Fe2O3. Nat. Mater. 16, 819–825 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Grave, D. A. et al. Extraction of mobile charge carrier photogeneration yield spectrum of ultrathin-film metal oxide photoanodes for solar water splitting. Nat. Mater. 20, 833–840 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Wang, J., Zhao, J. & Osterloh, F. E. Photochemical charge transfer observed in nanoscale hydrogen evolving photocatalysts using surface photovoltage spectroscopy. Energy Environ. Sci. 8, 2970–2976 (2015).

    Article  Google Scholar 

  27. Mora-Seró, I., Dittrich, T., Garcia-Belmonte, G. & Bisquert, J. Determination of spatial charge separation of diffusing electrons by transient photovoltage measurements. J. Appl. Phys. 100, 103705 (2006).

    Article  Google Scholar 

  28. Gross, D. et al. Charge separation in type II tunneling multilayered structures of CdTe and CdSe nanocrystals directly proven by surface photovoltage spectroscopy. J. Am. Chem. Soc. 132, 5981–5983 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Sambur, J. B. et al. Sub-particle reaction and photocurrent mapping to optimize catalyst-modified photoanodes. Nature 530, 77–80 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Hesari, M., Mao, X. & Chen, P. Charge carrier activity on single-particle photo(electro)catalysts: toward function in solar energy conversion. J. Am. Chem. Soc. 140, 6729–6740 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Mao, X. & Chen, P. Inter-facet junction effects on particulate photoelectrodes. Nat. Mater. 21, 331–337 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Warren, S. C. et al. Identifying champion nanostructures for solar water-splitting. Nat. Mater. 12, 842–849 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Gerber, C. & Lang, H. P. How the doors to the nanoworld were opened. Nat. Nanotechnol. 1, 3–5 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Bonnell, D. A. et al. Imaging physical phenomena with local probes: from electrons to photons. Rev. Mod. Phys. 84, 1343–1381 (2012).

    Article  CAS  Google Scholar 

  35. Melitz, W., Shen, J., Kummel, A. C. & Lee, S. Kelvin probe force microscopy and its application. Surf. Sci. Rep. 66, 1–27 (2011).

    Article  CAS  Google Scholar 

  36. Nanayakkara, S. U. et al. Built-in potential and charge distribution within single heterostructured nanorods measured by scanning Kelvin probe microscopy. Nano Lett. 13, 1278–1284 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Bergmann, V. W. et al. Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell. Nat. Commun. 5, 5001 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Chen, Q. et al. Quantitative operando visualization of the energy band depth profile in solar cells. Nat. Commun. 6, 7745 (2015).

    Article  PubMed  Google Scholar 

  39. Jiang, C. S. et al. Carrier separation and transport in perovskite solar cells studied by nanometre-scale profiling of electrical potential. Nat. Commun. 6, 8397 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. He, T. et al. Site-specific chemical doping reveals electron atmospheres at the surfaces of organic semiconductor crystals. Nat. Mater. 20, 1532–1538 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Ida, S., Takashiba, A., Koga, S., Hagiwara, H. & Ishihara, T. Potential gradient and photocatalytic activity of an ultrathin p-n junction surface prepared with two-dimensional semiconducting nanocrystals. J. Am. Chem. Soc. 136, 1872–1878 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Kronik, L. & Shapira, Y. Surface photovoltage phenomena: theory, experiment, and applications. Surf. Sci. Rep. 37, 1–206 (1999).

    Article  CAS  Google Scholar 

  43. Liscio, A. et al. Photovoltaic charge generation visualized at the nanoscale: a proof of principle. J. Am. Chem. Soc. 130, 780–781 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Spadafora, E. J., Demadrille, R., Ratier, B. & Grevin, B. Imaging the carrier photogeneration in nanoscale phase segregated organic heterojunctions by Kelvin probe force microscopy. Nano Lett. 10, 3337–3342 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Luria, J. L. et al. Spectroscopic imaging of photopotentials and photoinduced potential fluctuations in a bulk heterojunction solar cell film. ACS Nano 6, 9392–9401 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Shao, G. Z., Glaz, M. S., Ma, F., Ju, H. X. & Ginger, D. S. Intensity-modulated scanning Kelvin probe microscopy for probing recombination in organic photovoltaics. ACS Nano 8, 10799–10807 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Tennyson, E. M. et al. Nanoimaging of open-circuit voltage in photovoltaic devices. Adv. Energy Mater. 5, 1501142 (2015).

    Article  Google Scholar 

  48. Garrett, J. L. et al. Real-time nanoscale open-circuit voltage dynamics of perovskite solar cells. Nano Lett. 17, 2554–2560 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Chen, R. et al. Giant defect-induced effects on nanoscale charge separation in semiconductor photocatalysts. Nano Lett. 19, 426–432 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Linic, S., Aslam, U., Boerigter, C. & Morabito, M. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 14, 567–576 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Aslam, U., Rao, V. G., Chavez, S. & Linic, S. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nat. Catal. 1, 656–665 (2018).

    Article  Google Scholar 

  52. Wang, S. et al. Positioning the water oxidation reaction sites in plasmonic photocatalysts. J. Am. Chem. Soc. 139, 11771–11778 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Gao, Y. et al. Probing of coupling effect induced plasmonic charge accumulation for water oxidation. Natl Sci. Rev. 8, nwaa151 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Wang, X. et al. In situ construction of a Cs2SnI6 perovskite nanocrystal/SnS2 nanosheet heterojunction with boosted interfacial charge transfer. J. Am. Chem. Soc. 141, 13434–13441 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Xin, Z. et al. Rational design of dot-on-rod nano-heterostructure for photocatalytic CO2 reduction: pivotal role of hole transfer and utilization. Adv. Mater. 34, e2106662 (2022).

    Article  PubMed  Google Scholar 

  56. Zhang, B. et al. Facet-oriented assembly of Mo:BiVO4 and Rh:SrTiO3 particles: integration of p–n conjugated photo-electrochemical system in a particle applied to photocatalytic overall water splitting. ACS Catal. 12, 2415–2425 (2022).

    Article  CAS  Google Scholar 

  57. Ben, H. et al. Diffusion‐controlled Z‐scheme‐steered charge separation across PDI/BiOI heterointerface for ultraviolet, visible, and infrared light‐driven photocatalysis. Adv. Funct. Mater. 31, 2102315 (2021).

    Article  CAS  Google Scholar 

  58. Liu, Y. et al. Phase-enabled metal-organic framework homojunction for highly selective CO2 photoreduction. Nat. Commun. 12, 1231 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang, S. et al. Boosted photoreforming of plastic waste via defect-rich NiPS(3) nanosheets. J. Am. Chem. Soc. 145, 6410–6419 (2023).

    Article  CAS  PubMed  Google Scholar 

  60. Tachikawa, T., Yamashita, S. & Majima, T. Evidence for crystal-face-dependent TiO2 photocatalysis from single-molecule imaging and kinetic analysis. J. Am. Chem. Soc. 133, 7197–7204 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Mao, X., Liu, C., Hesari, M., Zou, N. & Chen, P. Super-resolution imaging of non-fluorescent reactions via competition. Nat. Chem. 11, 687–694 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Tachikawa, T., Ochi, T. & Kobori, Y. Crystal-face-dependent charge dynamics on a BiVO4 photocatalyst revealed by single-particle spectroelectrochemistry. ACS Catal. 6, 2250–2256 (2016).

    Article  CAS  Google Scholar 

  63. Lee, J. K., Wu, S., Lim, P. C. & Zhang, Z. Spectrally resolved single particle photoluminescence microscopy reveals heterogeneous photocorrosion activity of cuprous oxide microcrystals. Nano Lett. 22, 4654–4660 (2022).

    Article  CAS  PubMed  Google Scholar 

  64. Man, M. K. et al. Imaging the motion of electrons across semiconductor heterojunctions. Nat. Nanotechnol. 12, 36–40 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. Doherty, T. A. S. et al. Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites. Nature 580, 360–366 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Najafi, E., Scarborough, T. D., Tang, J. & Zewail, A. Four-dimensional imaging of carrier interface dynamics in p-n junctions. Science 347, 164–167 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Liao, B., Najafi, E., Li, H., Minnich, A. J. & Zewail, A. H. Photo-excited hot carrier dynamics in hydrogenated amorphous silicon imaged by 4D electron microscopy. Nat. Nanotechnol. 12, 871–876 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. Terada, Y., Yoshida, S., Takeuchi, O. & Shigekawa, H. Real-space imaging of transient carrier dynamics by nanoscale pump–probe microscopy. Nat. Photonics 4, 869–874 (2010).

    Article  CAS  Google Scholar 

  69. Guo, C. et al. Probing nonequilibrium dynamics of photoexcited polarons on a metal-oxide surface with atomic precision. Phys. Rev. Lett. 124, 206801 (2020).

    Article  CAS  PubMed  Google Scholar 

  70. Coffey, D. C. & Ginger, D. S. Time-resolved electrostatic force microscopy of polymer solar cells. Nat. Mater. 5, 735–740 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Collins, L. et al. Breaking the time barrier in Kelvin probe force microscopy: fast free force reconstruction using the G-mode platform. ACS Nano 11, 8717–8729 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Giridharagopal, R. et al. Submicrosecond time resolution atomic force microscopy for probing nanoscale dynamics. Nano Lett. 12, 893–898 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Umeda, K.-I. et al. Practical aspects of Kelvin-probe force microscopy at solid/liquid interfaces in various liquid media. J. Appl. Phys. 116, 134307 (2014).

    Article  Google Scholar 

  74. Collins, L. et al. Probing charge screening dynamics and electrochemical processes at the solid-liquid interface with electrochemical force microscopy. Nat. Commun. 5, 3871 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Hackl, T., Schitter, G. & Mesquida, P. AC Kelvin probe force microscopy enables charge mapping in water. ACS Nano 16, 17982–17990 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Collins, L., Kilpatrick, J. I., Kalinin, S. V. & Rodriguez, B. J. Towards nanoscale electrical measurements in liquid by advanced KPFM techniques: a review. Rep. Prog. Phys. 81, 086101 (2018).

    Article  PubMed  Google Scholar 

  77. Nellist, M. R. et al. Potential-sensing electrochemical atomic force microscopy for in operando analysis of water-splitting catalysts and interfaces. Nat. Energy 3, 46–52 (2017).

    Article  Google Scholar 

  78. Laskowski, F. A. L. et al. Nanoscale semiconductor/catalyst interfaces in photoelectrochemistry. Nat. Mater. 19, 69–76 (2020).

    Article  CAS  PubMed  Google Scholar 

  79. Chen, R. et al. Linking the photoinduced surface potential difference to interfacial charge transfer in photoelectrocatalytic water oxidation. J. Am. Chem. Soc. 145, 4667–4674 (2023).

    Article  CAS  PubMed  Google Scholar 

  80. Barbet, S. et al. Cross-talk artefacts in Kelvin probe force microscopy imaging: a comprehensive study. J. Appl. Phys. 115, 144313 (2014).

    Article  Google Scholar 

  81. Ziegler, D. & Stemmer, A. Force gradient sensitive detection in lift-mode Kelvin probe force microscopy. Nanotechnology 22, 075501 (2011).

    Article  PubMed  Google Scholar 

  82. Enevoldsen, G. H., Glatzel, T., Christensen, M. C., Lauritsen, J. V. & Besenbacher, F. Atomic scale Kelvin probe force microscopy studies of the surface potential variations on the TiO2 (110) surface. Phys. Rev. Lett. 100, 236104 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Fengler, S. & Dittrich, T. Algorithm for random walk simulation of modulated surface photovoltage signals in nanostructured systems with localized states. J. Phys. Chem. C. 120, 17777–17783 (2016).

    Article  CAS  Google Scholar 

  84. Ivanov, T., Donchev, V., Germanova, K. & Kirilov, K. A vector model for analysing the surface photovoltage amplitude and phase spectra applied to complicated nanostructures. J. Phys. D. Appl. Phys. 42, 135302 (2009).

    Article  Google Scholar 

  85. Minegishi, T., Nishimura, N., Kubota, J. & Domen, K. Photoelectrochemical properties of LaTiO2N electrodes prepared by particle transfer for sunlight-driven water splitting. Chem. Sci. 4, 1120 (2013).

    Article  CAS  Google Scholar 

  86. Liu, R. R. et al. Facet dependent SEI formation on the LiNi0.5Mn1.5O4 cathode identified by in situ single particle atomic force microscopy. Chem. Commun. 50, 15756–15759 (2014).

    Article  CAS  Google Scholar 

  87. Siegfried, M. J. & Choi, K. S. Electrochemical crystallization of cuprous oxide with systematic shape evolution. Adv. Mater. 16, 1743–1746 (2004).

    Article  CAS  Google Scholar 

  88. Cui, A. et al. Probing electromechanical behaviors by datacube piezoresponse force microscopy in ambient and aqueous environments. Nanotechnology 30, 235701 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Arrighi, A., Ullberg, N., Derycke, V. & Grevin, B. A simple KPFM-based approach for electrostatic-free topographic measurements: the case of MoS2 on SiO2. Nanotechnology 34, 215705 (2023).

    Article  Google Scholar 

  90. Melo, M. A. Jr. et al. Surface photovoltage measurements on a particle tandem photocatalyst for overall water splitting. Nano Lett. 18, 805–810 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (22372159, 22102173, 22088102 and 22325205), the Young Elite Scientist Sponsorship Program by CAST (YESS20220177), the National Program on Key Basic Research Project (2021YFA1500600 and 2021YFA1502300), CAS Projects for Young Scientists in Basic Research (YSBR-004) and Interdisciplinary Innovation Team (JCTD-2018-10) and the Dalian Institute of Chemical Physics Innovation Foundation (DICPSZ201801).

Author information

Authors and Affiliations

Authors

Contributions

C.L. conceived and proposed the project. R.C. and F.F. carried out the project. R.C. conceived the protocol, performed the experiments, analyzed the data and wrote and edited the manuscript. C.N. assisted in organizing procedures, J.Z. assisted in experimental setup and F.F. and C.L. revised the manuscript.

Corresponding authors

Correspondence to Ruotian Chen, Fengtao Fan or Can Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Hongqi Sun and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Chen, R. et al. Chem. Soc. Rev. 47, 8238–8262 (2018): https://doi.org/10.1039/C8CS00320C

Chen, R. et al. Nat. Energy 3, 655–663 (2018): https://doi.org/10.1038/s41560-018-0194-0

Chen, R. et al. Nature 610, 296–301 (2022): https://doi.org/10.1038/s41586-022-05183-1

Chen, R. et al. Nano Lett. 19, 426–432 (2019): https://doi.org/10.1021/acs.nanolett.8b04245

Extended data

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Ni, C., Zhu, J. et al. Surface photovoltage microscopy for mapping charge separation on photocatalyst particles. Nat Protoc (2024). https://doi.org/10.1038/s41596-024-00992-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-024-00992-2

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing