Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Noninvasive in vivo microscopy of single neutrophils in the mouse brain via NIR-II fluorescent nanomaterials

Abstract

In vivo microscopy of single cells enables following pathological changes in tissues, revealing signaling networks and cell interactions critical to disease progression. However, conventional intravital microscopy at visible and near-infrared wavelengths <900 nm (NIR-I) suffers from attenuation and is typically performed following the surgical creation of an imaging window. Such surgical procedures cause the alteration of the local vasculature and induce inflammation in skin, muscle and skull, inevitably altering the microenvironment in the imaging area. Here, we detail the use of near-infrared fluorescence (NIR-II, 1,000–1,700 nm) for in vivo microscopy to circumvent attenuation in living tissues. This approach enables the noninvasive visualization of cell migration in deep tissues by labeling specific cells with NIR-II lanthanide downshifting nanoparticles exhibiting high physicochemical stability and photostability. We further developed a NIR-II fluorescence microscopy setup for in vivo imaging through the intact skull with high spatiotemporal resolution, which we use for the real-time dynamic visualization of single-neutrophil behavior in the deep brain of a mouse model of ischemic stroke. The labeled downshifting nanoparticle synthesis takes 5–6 d, the imaging system setup takes 1–2 h, the in vivo cell labeling takes 1–3 h, the in vivo NIR-II microscopic imaging takes 3–5 h and the data analysis takes 3–8 h. The procedures can be performed by users with standard laboratory training in nanomaterials research and appropriate animal handling.

Key points

  • Near-infrared fluorescence (NIR-II, 1,000–1,700 nm) microscopy enables noninvasive visualization of neutrophil dynamics in vivo, demonstrated by visualizing neutrophil recruitment to inflamed tissue, through the intact skull.

  • The procedure covers preparation of lanthanide downshifting nanoparticles, the custom-built NIR-II microscopic imaging setup, induction of acute inflammation models in mice, in vivo labeling of neutrophils and real-time image acquisition of single-cell dynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Workflow of in vivo NIR-II fluorescence microscopic imaging in this protocol.
Fig. 2: NIR-II fluorescent DSNPs preparation.
Fig. 3: The custom-built NIR-II microscopy system.
Fig. 4: In vivo imaging of neutrophils in the inflammatory vessel.
Fig. 5: In vivo imaging of neutrophils chemotaxis in the inflammatory vessel.
Fig. 6: In vivo imaging of cell extravasation.
Fig. 7: In vivo imaging of activated neutrophils in the inflamed vessels.

Similar content being viewed by others

Data availability

The authors declare that the main data discussed in this protocol are available in the supporting primary research papers (https://doi.org/10.1038/s41565-023-01422-2 and https://doi.org/10.1038/s41563-021-01063-7). The raw datasets are too large to be publicly shared but are available for research purposes from the corresponding authors upon reasonable request.

References

  1. Verweij, F. J. et al. The power of imaging to understand extracellular vesicle biology in vivo. Nat. Methods 18, 1013–1026 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Panferov, E. V. & Malashicheva, A. B. The use of fluorescence microscopy in the study of the processes of intracellular signaling. Cell Tissue Biol. 16, 401–411 (2022).

    Article  CAS  Google Scholar 

  3. Gartner, Z. J., Prescher, J. A. & Lavis, L. D. Unraveling cell-to-cell signaling networks with chemical biology. Nat. Chem. Biol. 13, 564–568 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Dai, T. et al. A fluorogenic trehalose probe for tracking phagocytosed Mycobacterium tuberculosis. J. Am. Chem. Soc. 142, 15259–15264 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pittet, M. J. & Weissleder, R. Intravital imaging. Cell 147, 983–991 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Robertson, T. A., Bunel, F. & Roberts, M. S. Fluorescein derivatives in intravital fluorescence imaging. Cells 2, 591–606 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ko, J. et al. In vivo click chemistry enables multiplexed intravital microscopy. Adv. Sci. 9, 2200064 (2022).

    Article  CAS  Google Scholar 

  8. Hong, G. et al. Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat. Photon. 8, 723–730 (2014).

    Article  CAS  Google Scholar 

  9. Miao, Q. et al. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat. Biotechnol. 35, 1102–1110 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Carr, J. A. et al. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc. Natl Acad. Sci. USA 115, 4465–4470 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen, Y., Wang, S. & Zhang, F. Near-infrared luminescence high-contrast in vivo biomedical imaging. Nat. Rev. Bioeng. 1, 60–78 (2023).

    Article  Google Scholar 

  12. Ntziachristos, V. Going deeper than microscopy: the optical imaging frontier in biology. Nat. Methods 7, 603–614 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Antaris, A. L. et al. A small-molecule dye for NIR-II imaging. Nat. Mater. 15, 235–242 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Chang, B. et al. A phosphorescent probe for in vivo imaging in the second near-infrared window. Nat. Biomed. Eng. 6, 629–639 (2021).

    Article  PubMed  Google Scholar 

  15. Cosco, E. D. et al. Shortwave infrared polymethine fluorophores matched to excitation lasers enable non-invasive, multicolour in vivo imaging in real time. Nat. Chem. 12, 1123–1130 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fan, Y. et al. NIR-II emissive Ru(II) metallacycle assisting fluorescence imaging and cancer therapy. Small 18, 2201625 (2022).

    Article  CAS  Google Scholar 

  17. Welsher, K. et al. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 4, 773–780 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bruns, O. T. et al. Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nat. Biomed. Eng. 1, 0056 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen, Y. et al. Shortwave infrared in vivo imaging with gold nanoclusters. Nano Lett. 17, 6330–6334 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, P. et al. NIR-II nanoprobes in-vivo assembly to improve image-guided surgery for metastatic ovarian cancer. Nat. Commun. 9, 2898 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li, B. H., Lu, L. F., Zhao, M. Y., Lei, Z. H. & Zhang, F. An efficient 1064 nm NIR-II excitation fluorescent molecular dye for deep-tissue high-resolution dynamic bioimaging. Angew. Chem. Int. Ed. 57, 7483–7487 (2018).

    Article  CAS  Google Scholar 

  22. Bandi, V. G. et al. Targeted multicolor in vivo imaging over 1,000 nm enabled by nonamethine cyanines. Nat. Methods 19, 353–358 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Lei, Z. et al. Stable, wavelength-tunable fluorescent dyes in the NIR-II region for in vivo high-contrast bioimaging and multiplexed biosensing. Angew. Chem. 58, 8166–8171 (2019).

    Article  CAS  Google Scholar 

  24. Li, K. et al. J-aggregates of meso-[2.2]paracyclophanyl-BODIPY dye for NIR-II imaging. Nat. Commun. 12, 2376 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Feng, Z. et al. Perfecting and extending the near-infrared imaging window. Light Sci. Appl. 10, 197 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lucero, M. Y. et al. Development of NIR-II photoacoustic probes tailored for deep-tissue sensing of nitric oxide. J. Am. Chem. Soc. 143, 7196–7202 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, S. et al. Anti-quenching NIR-II molecular fluorophores for in vivo high-contrast imaging and pH sensing. Nat. Commun. 10, 1058 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yao, C. et al. A bright, renal-clearable NIR-II brush macromolecular probe with long blood circulation time for kidney disease bioimaging. Angew. Chem. Int. Ed. 61, e202114273 (2022).

    Article  CAS  Google Scholar 

  29. Fan, Y. et al. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat. Nanotechnol. 13, 941–946 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Pei, P. et al. X-ray-activated persistent luminescence nanomaterials for NIR-II imaging. Nat. Nanotechnol. 16, 1011–1018 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Wang, T. et al. A hybrid erbium(III)–bacteriochlorin near-infrared probe for multiplexed biomedical imaging. Nat. Mater. 20, 1571–1578 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Lu, L. et al. NIR-II bioluminescence for in vivo high contrast imaging and in situ ATP-mediated metastases tracing. Nat. Commun. 11, 4192 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yang, Y. et al. NIR-II chemiluminescence molecular sensor for in vivo high-contrast inflammation imaging. Angew. Chem. 59, 18380–18385 (2020).

    Article  CAS  Google Scholar 

  34. Chen, H. et al. Differential responses of transplanted stem cells to diseased environment unveiled by a molecular NIR-II cell tracker. Research 2021, 9798580 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, F. et al. In vivo non-invasive confocal fluorescence imaging beyond 1,700 nm using superconducting nanowire single-photon detectors. Nat. Nanotechnol. 17, 653–660 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cai, Z. et al. NIR-II fluorescence microscopic imaging of cortical vasculature in non-human primates. Theranostics 10, 4265–4276 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wan, H. et al. A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues. Nat. Commun. 9, 1171 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhu, S. et al. 3D NIR-II molecular imaging distinguishes targeted organs with high-performance NIR-II bioconjugates. Adv. Mater. 30, e1705799 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kolaczkowska, E. & Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13, 159–175 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Mai, H.-X. et al. High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. J. Am. Chem. Soc. 128, 6426–6436 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Li, M. et al. Chemotaxis-driven delivery of nano-pathogenoids for complete eradication of tumors post-phototherapy. Nat. Commun. 11, 1126 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schmid, M. C. et al. Integrin CD11b activation drives anti-tumor innate immunity. Nat. Commun. 9, 5379 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ng, L. G. et al. Visualizing the neutrophil response to sterile tissue injury in mouse dermis reveals a three-phase cascade of events. J. Invest. Dermatol. 131, 2058–2068 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Liao, N. et al. In vivo tracking of cell viability for adoptive natural killer cell-based immunotherapy by ratiometric NIR-II fluorescence imaging. Angew. Chem. Int. Ed. 60, 20888–20896 (2021).

    Article  CAS  Google Scholar 

  45. He, Y. et al. NIR-II cell endocytosis-activated fluorescent probes for in vivo high-contrast bioimaging diagnostics. Chem. Sci. 12, 10474–10482 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, T. et al. Molecular-based fret nanosensor with dynamic ratiometric NIR-IIB fluorescence for real-time in vivo imaging and sensing. Nano Lett. 23, 4548–4556 (2023).

    Article  CAS  PubMed  Google Scholar 

  47. Yang, Y. et al. Fluorescence-amplified nanocrystals in the second near-infrared window for in vivo real-time dynamic multiplexed imaging. Nat. Nanotechnol. 18, 1195–1204 (2023).

    Article  CAS  PubMed  Google Scholar 

  48. Turk, M., Naumenko, V., Mahoney, D. J. & Jenne, C. N. Tracking cell recruitment and behavior within the tumor microenvironment using advanced intravital imaging approaches. Cells 7, 69 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tong, L. et al. Imaging and optogenetic modulation of vascular mural cells in the live brain. Nat. Protoc. 16, 472–496 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Dawson, C. A., Mueller, S. N., Lindeman, G. J., Rios, A. C. & Visvader, J. E. Intravital microscopy of dynamic single-cell behavior in mouse mammary tissue. Nat. Protoc. 16, 1907–1935 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Horton, N. G. et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat. Photon. 7, 205–209 (2013).

    Article  CAS  Google Scholar 

  52. Ritsma, L. et al. Surgical implantation of an abdominal imaging window for intravital microscopy. Nat. Protoc. 8, 583–594 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Hontani, Y., Xia, F. & Xu, C. Multicolor three-photon fluorescence imaging with single-wavelength excitation deep in mouse brain. Sci. Adv. 7, eabf3531 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hashimoto, R. et al. An acid-activatable fluorescence probe for imaging osteocytic bone resorption activity in deep bone cavities. Angew. Chem. Int. Ed. 59, 20996–21000 (2020).

    Article  CAS  Google Scholar 

  55. Sun, W., Li, M., Fan, J. & Peng, X. Activity-based sensing and theranostic probes based on photoinduced electron transfer. Acc. Chem. Res. 52, 2818–2831 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Xu, H.-T., Pan, F., Yang, G. & Gan, W.-B. Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nat. Neurosci. 10, 549–551 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Albota, M. et al. Design of organic molecules with large two-photon absorption cross sections. Science 281, 1653–1656 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2, 932–940 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Li, J. L. et al. Intravital multiphoton imaging of immune responses in the mouse ear skin. Nat. Protoc. 7, 221–234 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Smith, A. M., Mancini, M. C. & Nie, S. Bioimaging: second window for in vivo imaging. Nat. Nanotechnol. 4, 710–711 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Holtmaat, A. et al. Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat. Protoc. 4, 1128–1144 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang, C. et al. A large, switchable optical clearing skull window for cerebrovascular imaging. Theranostics 8, 2696–2708 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li, B. et al. Organic NIR-II molecule with long blood half-life for in vivo dynamic vascular imaging. Nat. Commun. 11, 3102 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Boivin, G. et al. Durable and controlled depletion of neutrophils in mice. Nat. Commun. 11, 2762 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Che, J. et al. Neutrophils enable local and non-invasive liposome delivery to inflamed skeletal muscle and ischemic heart. Adv. Mater. 32, e2003598 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Dudeck, J. et al. Directional mast cell degranulation of tumor necrosis factor into blood vessels primes neutrophil extravasation. Immunity 54, 468–483 e465 (2021).

    Article  CAS  PubMed  Google Scholar 

  67. Bader, A. et al. Molecular insights into neutrophil biology from the zebrafish perspective: lessons from CD18 deficiency. Front. Immunol. 12, 677994 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Roberts, J. E. Lanthanum and neodymium salts of trifluoroacetic acid. J. Am. Chem. Soc. 83, 1087–1088 (1961).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China(2023YFB3507100), National Natural Science Foundation of China (grant nos. 22088101, 21725502, 51961145403), New Cornerstone Science Foundation through the XPLORER PRIZE and the Research Program of Science, Innovation Program of Shanghai Municipal Education Commission and the Research Program of Science and Technology Commission of Shanghai Municipality (grant nos. 20JC1411700, 21142201000, 22JC1400400).

Author information

Authors and Affiliations

Authors

Contributions

F.Z. and Y.C., conceived and initiated the project. Y.C. and Y.Y. contributed to the experimental work shown in this protocol. Y.C., Y.Y. and F.Z. wrote the protocol. F.Z. supervised the study and the manuscript preparation. All authors reviewed and edited the manuscript and approved the final draft.

Corresponding author

Correspondence to Fan Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Xiaoyuan Chen, Dan Ding and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol:

Yang, Y. et al. Nat. Nanotechnol. 18, 1195–1204 (2023): https://doi.org/10.1038/s41565-023-01422-2

Wang, T. et al. Nat. Mater. 20, 1571–1578, (2021): https://doi.org/10.1038/s41563-021-01063-7

Supplementary information

Supplementary Information

Supplementary Discussion and Figs. 1–3.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Yang, Y. & Zhang, F. Noninvasive in vivo microscopy of single neutrophils in the mouse brain via NIR-II fluorescent nanomaterials. Nat Protoc (2024). https://doi.org/10.1038/s41596-024-00983-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-024-00983-3

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing