Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Advances in mass spectrometry to unravel the structure and function of protein condensates

Abstract

Membrane-less organelles assemble through liquid–liquid phase separation (LLPS) of partially disordered proteins into highly specialized microenvironments. Currently, it is challenging to obtain a clear understanding of the relationship between the structure and function of phase-separated protein assemblies, owing to their size, dynamics and heterogeneity. In this Perspective, we discuss recent advances in mass spectrometry (MS) that offer several promising approaches for the study of protein LLPS. We survey MS tools that have provided valuable insights into other insoluble protein systems, such as amyloids, and describe how they can also be applied to study proteins that undergo LLPS. On the basis of these recent advances, we propose to integrate MS into the experimental workflow for LLPS studies. We identify specific challenges and future opportunities for the analysis of protein condensate structure and function by MS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Possible strategies for investigating amyloid formation and LLPS with MS.
Fig. 2: Insights into the TDP-43 assembly process from MS.
Fig. 3: MS in the experimental LLPS workflow, and some current challenges.

Similar content being viewed by others

Data availability

All data are available from the corresponding authors upon reasonable request.

References

  1. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: Organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Hnisz, D., Shrinivas, K., Young, R. A., Chakraborty, A. K. & Sharp, P. A. A phase separation model for transcriptional control. Cell 169, 13–23 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lafontaine, D. L. J., Riback, J. A., Bascetin, R. & Brangwynne, C. P. The nucleolus as a multiphase liquid condensate. Nat. Rev. Mol. Cell Biol. 22, 165–182 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Wu, H. & Fuxreiter, M. The structure and dynamics of higher-order assemblies: amyloids, signalosomes, and granules. Cell 165, 1055–1066 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bremer, A. et al. Deciphering how naturally occurring sequence features impact the phase behaviours of disordered prion-like domains. Nat. Chem. 14, 196–207 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, J. et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174, 688–699 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hardenberg, M., Horvath, A., Ambrus, V., Fuxreiter, M. & Vendruscolo, M. Widespread occurrence of the droplet state of proteins in the human proteome. Proc. Natl Acad. Sci. USA 117, 33254–33262 (2021).

    Article  Google Scholar 

  9. Martin, E. W. et al. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science 367, 694–699 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mitrea, D. M. et al. Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA. eLife 5, e13571 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mitrea, D. M. & Kriwacki, R. W. Phase separation in biology; functional organization of a higher order. Cell Commun. Signal. 14, 1 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Murthy, A. C. & Fawzi, N. L. The (un)structural biology of biomolecular liquid–liquid phase separation using NMR spectroscopy. J. Biol. Chem. 295, 2375–2384 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Villegas, J. A., Heidenreich, M. & Levy, E. D. Molecular and environmental determinants of biomolecular condensate formation. Nat. Chem. Biol. 18, 1319–1329 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Conicella, A. E. et al. TDP-43 α-helical structure tunes liquid–liquid phase separation and function. Proc. Natl Acad. Sci. Usa. 117, 5883–5894 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, A. et al. A single N‐terminal phosphomimic disrupts TDP‐43 polymerization, phase separation, and RNA splicing. EMBO J. 37, e97452 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Conicella, A. E., Zerze, G. H., Mittal, J. & Fawzi, N. L. ALS mutations disrupt phase separation mediated by α-helical structure in the TDP-43 low-complexity C-terminal domain. Structure 24, 1537–1549 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Afroz, T. et al. Functional and dynamic polymerization of the ALS-linked protein TDP-43 antagonizes its pathologic aggregation. Nat. Commun. 8, 45 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lössl, P., van de Waterbeemd, M. & Heck, A. J. The diverse and expanding role of mass spectrometry in structural and molecular biology. EMBO J. 35, 2634–2657 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Benesch, J. L. P. Collisional activation of protein complexes: picking up the pieces. J. Am. Soc. Mass Spectrom. 20, 341–348 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Jurneczko, E. & Barran, P. E. How useful is ion mobility mass spectrometry for structural biology? The relationship between protein crystal structures and their collision cross sections in the gas phase. Analyst 136, 20–28 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Politis, A. et al. A mass spectrometry-based hybrid method for structural modeling of protein complexes. Nat. Methods 11, 403–406 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Marklund, E. G., Degiacomi, M. T., Robinson, C. V., Baldwin, A. J. & Benesch, J. L. P. Collision cross sections for structural proteomics. Structure 23, 791–799 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Sinz, A., Arlt, C., Chorev, D. & Sharon, M. Chemical cross-linking and native mass spectrometry: A fruitful combination for structural biology. Protein Sci. 24, 1193–1209 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Piersimoni, L. & Sinz, A. Cross-linking/mass spectrometry at the crossroads. Anal. Bioanal. Chem. 412, 5981–5987 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Costeira-Paulo, J. et al. Lipids shape the electron acceptor-binding site of the peripheral membrane protein dihydroorotate dehydrogenase. Cell Chem. Biol. 25, 309–317.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moghadamchargari, Z. et al. Intrinsic GTPase activity of K-RAS monitored by native mass spectrometry. Biochemistry 58, 3396–3405 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Van De Waterbeemd, M. et al. High-fidelity mass analysis unveils heterogeneity in intact ribosomal particles. Nat. Methods 14, 283–286 (2017).

    Article  PubMed  Google Scholar 

  28. Tüting, C., Iacobucci, C., Ihling, C. H., Kastritis, P. L. & Sinz, A. Structural analysis of 70S ribosomes by cross-linking/mass spectrometry reveals conformational plasticity. Sci. Rep. 10, 12618 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kiosze-Becker, K. et al. Structure of the ribosome post-recycling complex probed by chemical cross-linking and mass spectrometry. Nat. Commun. 7, 13248 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Aquilina, J. A., Benesch, J. L. P., Bateman, O. A., Slingsby, C. & Robinson, C. V. Polydispersity of a mammalian chaperone: mass spectrometry reveals the population of oligomers in αB-crystallin. Proc. Natl Acad. Sci. Usa. 100, 10611–10616 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Baldwin, A. J. et al. The polydispersity of αb-crystallin is rationalized by an interconverting polyhedral architecture. Structure 19, 1855–1863 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Stuchfield, D. et al. The use of mass spectrometry to examine IDPs: unique insights and caveats. Methods Enzymol. 611, 459–502 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Stuchfield, D. & Barran, P. Unique insights to intrinsically disordered proteins provided by ion mobility mass spectrometry. Curr. Opin. Chem. Biol. 42, 177–185 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Chiti, F. & Dobson, C. M. Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu. Rev. Biochem. 86, 27–68 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Bleiholder, C., Dupuis, N. F., Wyttenbach, T. & Bowers, M. T. Ion mobilityg-mass spectrometry reveals a conformational conversion from random assembly to β-sheet in amyloid fibril formation. Nat. Chem. 3, 172–177 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Song, W., Wei, G., Mousseau, N. & Derreumaux, P. Self-assembly of the β2-microglobulin NHVTLSQ peptide using a coarse-grained protein model reveals a β-barrel species. J. Phys. Chem. B 101, 1238–1247 (2008).

    Google Scholar 

  37. Cawood, E. E., Karamanos, T. K., Wilson, A. J. & Radford, S. E. Visualizing and trapping transient oligomers in amyloid assembly pathways. Biophys. Chem. 268, 106505 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hoffmann, W. et al. NFGAIL amyloid oligomers: the onset of beta-sheet formation and the mechanism for fibril formation. J. Am. Chem. Soc. 140, 244–249 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Lieblein, T. et al. Structural rearrangement of amyloid-β upon inhibitor binding suppresses formation of Alzheimer’s disease related oligomers. eLife 9, e59306 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Smirnovas, V. et al. Structural organization of brain-derived mammalian prions examined by hydrogen–deuterium exchange. Nat. Struct. Mol. Biol. 18, 504–506 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Carulla, N. et al. Molecular recycling within amyloid fibrils. Nature 436, 554–558 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Sánchez, L. et al. Aβ40 and Aβ42 amyloid fibrils exhibit distinct molecular recycling properties. J. Am. Chem. Soc. 133, 6505–6508 (2011).

    Article  PubMed  Google Scholar 

  43. Österlund, N. et al. Mass spectrometry and machine learning reveal determinants of client recognition by antiamyloid chaperones. Mol. Cell. Proteom. 10, 100413 (2022).

    Article  Google Scholar 

  44. Österlund, N., Lundqvist, M., Ilag, L. L., Gräslund, A. & Emanuelsson, C. Amyloid-β oligomers are captured by the DNAJB6 chaperone: direct detection of interactions that can prevent primary nucleation. J. Biol. Chem. 295, 8135–8144 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Meinen, B. A., Gadkari, V. V., Stull, F., Ruotolo, B. T. & Bardwell, J. C. A. SERF engages in a fuzzy complex that accelerates primary nucleation of amyloid proteins. Proc. Natl Acad. Sci. Usa. 116, 23040–23049 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Young, L. M. et al. Screening and classifying small-molecule inhibitors of amyloid formation using ion mobility spectrometry–mass spectrometry. Nat. Chem. 7, 73–81 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Doussineau, T. et al. Mass determination of entire amyloid fibrils by using mass spectrometry. Angew. Chem. Int. Ed. 55, 2340–2344 (2016).

    Article  CAS  Google Scholar 

  48. Alberti, S. et al. A user’s guide for phase separation assays with purified proteins. J. Mol. Biol. 430, 4806–4820 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brangwynne, C. P., Mitchison, T. J. & Hyman, A. A. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc. Natl Acad. Sci. Usa. 108, 4334–4339 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sakashita, G., Kiyoi, H., Naoe, T. & Urano, T. Analysis of the oligomeric states of nucleophosmin using size exclusion chromatography. Sci. Rep. 8, 4008 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Saluri, M. et al. A ‘grappling hook’ interaction connects self-assembly and chaperone activity of Nucleophosmin 1. PNAS Nexus 2, pgac303 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Robb, C. G., Dao, T. P., Ujma, J., Castañeda, C. A. & Beveridge, R. Ion mobility mass spectrometry unveils global protein conformations in response to conditions that promote and reverse liquid–liquid phase separation. J. Am. Chem. Soc. https://doi.org/10.1021/jacs.3c00756 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ray, S. et al. α-Synuclein aggregation nucleates through liquid–liquid phase separation. Nat. Chem. 12, 705–716 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Ubbiali, D. et al. Direct observation of “elongated” conformational states in α-synuclein upon liquid–liquid phase separation. Angew. Chem. Int. Ed. 61, e202205726 (2022).

    Article  CAS  Google Scholar 

  55. Boczek, E. E. et al. HspB8 prevents aberrant phase transitions of FUS by chaperoning its folded RNA binding domain. eLife 10, e69377 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Emmanouilidis, L. et al. NMR and EPR reveal a compaction of the RNA-binding protein FUS upon droplet formation. Nat. Chem. Biol. 17, 608–614 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Sahin, C. et al. Mass spectrometry of RNA-binding proteins during liquid–liquid phase separation reveals distinct assembly mechanisms and droplet architectures. J. Am. Chem. Soc. 145, 10659–10668 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Harrison, A. F. & Shorter, J. RNA-binding proteins with prion-like domains in health and disease. Biochem. J. 474, 1417–1438 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Portz, B., Lee, B. L. & Shorter, J. FUS and TDP-43 phases in health and disease. Trends Biochem. Sci. 46, 550–563 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sahin, C. et al. Ion mobility-mass spectrometry shows stepwise protein unfolding under alkaline conditions. Chem. Commun. 57, 1450–1453 (2021).

    Article  CAS  Google Scholar 

  61. Tsoi, P. S. et al. The N-terminal domain of ALS-linked TDP-43 assembles without misfolding. Angew. Chem. Int. Ed. 56, 12590–12593 (2017).

    Article  CAS  Google Scholar 

  62. Hallegger, M. et al. TDP-43 condensation properties specify its RNA-binding and regulatory repertoire. Cell 184, 4680–4696 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Landreh, M. et al. Predicting the shapes of protein complexes through collision cross section measurements and database searches. Anal. Chem. 92, 12297–12303 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Leppert, A. et al. Liquid–liquid phase separation primes spider silk proteins for fiber formation via a conditional sticker domain. Nano Lett. https://doi.org/10.1021/acs.nanolett.3c00773 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Krainer, G. et al. Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions. Nat. Commun. 12, 1085 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Konermann, L. Addressing a common misconception: ammonium acetate as neutral pH “buffer” for native electrospray mass spectrometry. J. Am. Soc. Mass Spectrom. 28, 1827–1835 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Beveridge, R. et al. Relating gas phase to solution conformations: lessons from disordered proteins. Proteomics 15, 2872–2883 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Abramsson, M. L. et al. Charge engineering reveals the roles of ionizable side chains in electrospray ionization mass spectrometry. JACS Au. 1, 2385–2393 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Beveridge, R. et al. Ion mobility mass spectrometry uncovers the impact of the patterning of oppositely charged residues on the conformational distributions of intrinsically disordered proteins. J. Am. Chem. Soc. 141, 4908–4918 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Johnson, D. T., Di Stefano, L. H. & Jones, L. M. Fast photochemical oxidation of proteins (FPOP): a powerful mass spectrometry-based structural proteomics tool. J. Biol. Chem. 294, 11969–11979 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Parson, M., Jenkins, M. & Burke, J. Investigating how intrinsically disordered regions contribute to protein function using HDX–MS. Biochem. Soc. Trans. 50, 1607–1617 (2022).

    Article  CAS  PubMed  Google Scholar 

  72. Mitra, G. Emerging role of mass spectrometry-based structural proteomics in elucidating intrinsic disorder in proteins. Proteomics 21, 2000011 (2021).

    Article  CAS  Google Scholar 

  73. Paloni, M., Bailly, R., Ciandrini, L. & Barducci, A. Unraveling molecular interactions in liquid-liquid phase separation of disordered proteins by atomistic simulations. J. Phys. Chem. B 124, 9009–9016 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Nasir, I., Onuchic, P. L., Labra, S. R. & Deniz, A. A. Single-molecule fluorescence studies of intrinsically disordered proteins and liquid phase separation. Biochim. Biophys. Acta - Proteins Proteom. 1867, 980–987 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ray, S., Singh, N., Patel, K., Krishnamoorthy, G. & Maji, S. K. FRAP and FRET investigation of α-synuclein fibrillization via liquid–liquid phase separation in vitro and in hela cells. Methods Mol. Biol. 2551, 395–423 (2023).

    Article  PubMed  Google Scholar 

  76. Li, P. et al. Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336–340 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Martin, E. W. et al. A multi-step nucleation process determines the kinetics of prion-like domain phase separation. Nat. Commun. 12, 4513 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Guenther, E. L. et al. Atomic structures of TDP-43 LCD segments and insights into reversible or pathogenic aggregation. Nat. Struct. Mol. Biol. 25, 463–471 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Stender, E. G. P. et al. Capillary flow experiments for thermodynamic and kinetic characterization of protein liquid–liquid phase separation. Nat. Commun. 12, 7289 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Arter, W. E. et al. Biomolecular condensate phase diagrams with a combinatorial microdroplet platform. Nat. Commun. 13, 7845 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.L. is supported by a career position funded by the Karolinska Institutet, Sweden, faculty; a Cancerfonden Project grant (22 2033 Pj); and a Swedish Research Council (Vetenskapsrådet) starting grant (2019-01961). C.S. is supported by a Novo Nordisk Foundation Postdoctoral Fellowship (NNF19OC0055700). A.L. is supported by the Olle Engkvist Foundation (to M.L.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cagla Sahin or Michael Landreh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahin, C., Leppert, A. & Landreh, M. Advances in mass spectrometry to unravel the structure and function of protein condensates. Nat Protoc 18, 3653–3661 (2023). https://doi.org/10.1038/s41596-023-00900-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00900-0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing