Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Minimally invasive longitudinal intravital imaging of cellular dynamics in intact long bone

Abstract

Intravital two-photon microscopy enables deep-tissue imaging at high temporospatial resolution in live animals. However, the endosteal bone compartment and underlying bone marrow pose unique challenges to optical imaging as light is absorbed, scattered and dispersed by thick mineralized bone matrix and the adipose-rich bone marrow. Early bone intravital imaging methods exploited gaps in the cranial sutures to bypass the need to penetrate through cortical bone. More recently, investigators have developed invasive methods to thin the cortical bone or implant imaging windows to image cellular dynamics in weight-bearing long bones. Here, we provide a step-by-step procedure for the preparation of animals for minimally invasive, nondestructive, longitudinal intravital imaging of the murine tibia. This method involves the use of mixed bone marrow radiation chimeras to unambiguously double-label osteoclasts and osteomorphs. The tibia is exposed by a simple skin incision and an imaging chamber constructed using thermoconductive T-putty. Imaging sessions up to 12 h long can be repeated over multiple timepoints to provide a longitudinal time window into the endosteal and marrow niches. The approach can be used to investigate cellular dynamics in bone remodeling, cancer cell life cycle and hematopoiesis, as well as long-lived humoral and cellular immunity. The procedure requires an hour to complete and is suitable for users with minimal prior expertise in small animal surgery.

Key points

  • An imaging approach for tracking osteoclasts in vivo using bone marrow chimeras obtained from two different lineage reporter mice. The labeled cells can be detected in the tibia with minimally invasive surgery and the creation of an imaging chamber.

  • The nondestructive approach enables the longitudinal monitoring of the cells in a weight-bearing bone, over a period of days to weeks, without requiring thinning of the bone.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the protocol for intravital imaging in the intact tibia.
Fig. 2: Preparation of mice for intravital imaging of the tibia.
Fig. 3: Osteoclastic recycling during the steady state.
Fig. 4: Regional differences in osteoclastic recycling rates in the tibia.
Fig. 5: Mapping osteoclastic activity to different regions in the tibia.

Similar content being viewed by others

Data availability

All source imaging data are too large to be included but are available from the corresponding author upon request. Scripts used are available at https://github.com/theimagelab/bone_imaging.

References

  1. Ascenzi, A. & Fabry, C. Technique for dissection and measurement of refractive index of osteones. J. Biophys. Biochem. Cytol. 6, 139–142 (1959).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bolin, F. P., Preuss, L. E., Taylor, R. C. & Ference, R. J. Refractive index of some mammalian tissues using a fiber optic cladding method. Appl. Opt. 28, 2297–2303 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Phan, T. G. & Bullen, A. Practical intravital two-photon microscopy for immunological research: faster, brighter, deeper. Immunol. Cell Biol. 88, 438–444 (2010).

    Article  PubMed  Google Scholar 

  4. Mazo, I. B. et al. Hematopoietic progenitor cell rolling in bone marrow microvessels: parallel contributions by endothelial selectins and vascular cell adhesion molecule 1. J. Exp. Med. 188, 465–474 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lo Celso, C., Lin, C. P. & Scadden, D. T. In vivo imaging of transplanted hematopoietic stem and progenitor cells in mouse calvarium bone marrow. Nat. Protoc. 6, 1–14 (2011).

    Article  PubMed  Google Scholar 

  6. Hashimoto, K., Kaito, T., Kikuta, J. & Ishii, M. Intravital imaging of orthotopic and ectopic bone. Inflamm. Regen. 40, 26 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Clarke, B. Normal bone anatomy and physiology. Clin. J. Am. Soc. Nephrol. 3, S131–S139 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Olsen, B. R., Reginato, A. M. & Wang, W. Bone development. Annu. Rev. Cell Dev. Biol. 16, 191–220 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Rawlinson, S. C. et al. Adult rat bones maintain distinct regionalized expression of markers associated with their development. PLoS ONE 4, e8358 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Youlten, S. E. et al. Osteocyte transcriptome mapping identifies a molecular landscape controlling skeletal homeostasis and susceptibility to skeletal disease. Nat. Commun. 12, 2444 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, N., Niger, C., Li, N., Richards, G. O. & Skerry, T. M. Cross-species RNA-seq study comparing transcriptomes of enriched osteocyte populations in the tibia and skull. Front. Endocrinol. 11, 581002 (2020).

    Article  Google Scholar 

  12. Vatsa, A. et al. Osteocyte morphology in fibula and calvaria—is there a role for mechanosensing? Bone 43, 452–458 (2008).

    Article  PubMed  Google Scholar 

  13. Wan, Q. et al. Osteoblasts of calvaria induce higher numbers of osteoclasts than osteoblasts from long bone. Bone 86, 10–21 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Gharibi, B. et al. Site-specific differences in osteoblast phenotype, mechanical loading response and estrogen receptor-related gene expression. Mol. Cell. Endocrinol. 477, 140–147 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Everts, V. et al. Functional heterogeneity of osteoclasts: matrix metalloproteinases participate in osteoclastic resorption of calvarial bone but not in resorption of long bone. FASEB J. 13, 1219–1230 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Everts, V. et al. Osteoclastic bone degradation and the role of different cysteine proteinases and matrix metalloproteinases: differences between calvaria and long bone. J. Bone Miner. Res. 21, 1399–1408 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Everts, V., de Vries, T. J. & Helfrich, M. H. Osteoclast heterogeneity: lessons from osteopetrosis and inflammatory conditions. Biochim. Biophys. Acta 1792, 757–765 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Jansen, I. D. et al. Ae2(a,b)-deficient mice exhibit osteopetrosis of long bones but not of calvaria. FASEB J. 23, 3470–3481 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. van den Bos, T., Speijer, D., Bank, R. A., Bromme, D. & Everts, V. Differences in matrix composition between calvaria and long bone in mice suggest differences in biomechanical properties and resorption: special emphasis on collagen. Bone 43, 459–468 (2008).

    Article  PubMed  Google Scholar 

  20. Scott, C. K. & Hightower, J. A. The matrix of endochondral bone differs from the matrix of intramembranous bone. Calcif. Tissue Int. 49, 349–354 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Lassailly, F., Foster, K., Lopez-Onieva, L., Currie, E. & Bonnet, D. Multimodal imaging reveals structural and functional heterogeneity in different bone marrow compartments: functional implications on hematopoietic stem cells. Blood 122, 1730–1740 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Xie, Y. et al. Detection of functional haematopoietic stem cell niche using real-time imaging. Nature 457, 97–101 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Gallagher, J. C., Goldgar, D. & Moy, A. Total bone calcium in normal women: effect of age and menopause status. J. Bone Miner. Res. 2, 491–496 (1987).

    Article  CAS  PubMed  Google Scholar 

  24. Coleman, R. E. et al. Bone metastases. Nat. Rev. Dis. Primers 6, 83 (2020).

    Article  PubMed  Google Scholar 

  25. Kohler, A. et al. Altered cellular dynamics and endosteal location of aged early hematopoietic progenitor cells revealed by time-lapse intravital imaging in long bones. Blood 114, 290–298 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Reismann, D. et al. Longitudinal intravital imaging of the femoral bone marrow reveals plasticity within marrow vasculature. Nat. Commun. 8, 2153 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lawson, M. A. et al. Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche. Nat. Commun. 6, 8983 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Kim, S., Lin, L., Brown, G. A. J., Hosaka, K. & Scott, E. W. Extended time-lapse in vivo imaging of tibia bone marrow to visualize dynamic hematopoietic stem cell engraftment. Leukemia 31, 1582–1592 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. McDonald, M. M. et al. Osteoclasts recycle via osteomorphs during RANKL-stimulated bone resorption. Cell 184, 1330–1347.e13 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Khoo, W. H. et al. A niche-dependent myeloid transcriptome signature defines dormant myeloma cells. Blood 134, 30–43 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Chen, X., Nadiarynkh, O., Plotnikov, S. & Campagnola, P. J. Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat. Protoc. 7, 654–669 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ishii, M. et al. Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature 458, 524–528 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kowada, T. et al. In vivo fluorescence imaging of bone-resorbing osteoclasts. J. Am. Chem. Soc. 133, 17772–17776 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Maeda, H. et al. Real-time intravital imaging of pH variation associated with osteoclast activity. Nat. Chem. Biol. 12, 579–585 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Kikuta, J. et al. Dynamic visualization of RANKL and Th17-mediated osteoclast function. J. Clin. Invest. 123, 866–873 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Furuya, M. et al. Direct cell-cell contact between mature osteoblasts and osteoclasts dynamically controls their functions in vivo. Nat. Commun. 9, 300 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Couasnay, G., Madel, M. B., Lim, J., Lee, B. & Elefteriou, F. Sites of Cre-recombinase activity in mouse lines targeting skeletal cells. J. Bone Miner. Res. 36, 1661–1679 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Winkeler, C. L., Kladney, R. D., Maggi, L. B. Jr. & Weber, J. D. Cathepsin K-Cre causes unexpected germline deletion of genes in mice. PLoS ONE 7, e42005 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shi, J., Hua, L., Harmer, D., Li, P. & Ren, G. Cre driver mice targeting macrophages. Methods Mol. Biol. 1784, 263–275 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sasmono, R. T. et al. Mouse neutrophilic granulocytes express mRNA encoding the macrophage colony-stimulating factor receptor (CSF-1R) as well as many other macrophage-specific transcripts and can transdifferentiate into macrophages in vitro in response to CSF-1. J. Leukoc. Biol. 82, 111–123 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Grabert, K. et al. A transgenic line that reports CSF1R protein expression provides a definitive marker for the mouse mononuclear phagocyte system. J. Immunol. 205, 3154–3166 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. MacDonald, K. P. et al. The colony-stimulating factor 1 receptor is expressed on dendritic cells during differentiation and regulates their expansion. J. Immunol. 175, 1399–1405 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Grootveld, A. K. et al. Apoptotic cell fragments locally activate tingible body macrophages in the germinal center. Cell 186, 1144–1161 e1118 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sasmono, R. T. et al. A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood 101, 1155–1163 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Jacome-Galarza, C. E. et al. Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature 568, 541–545 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Crainiciuc, G. et al. Behavioural immune landscapes of inflammation. Nature 601, 415–421 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kalajzic, I. et al. Use of type I collagen green fluorescent protein transgenes to identify subpopulations of cells at different stages of the osteoblast lineage. J. Bone Miner. Res. 17, 15–25 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. McDonald, M. M. et al. Inhibiting the osteocyte-specific protein sclerostin increases bone mass and fracture resistance in multiple myeloma. Blood 129, 3452–3464 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Phan, T. G. & Croucher, P. I. The dormant cancer cell life cycle. Nat. Rev. Cancer 20, 398–411 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Christodoulou, C. et al. Live-animal imaging of native haematopoietic stem and progenitor cells. Nature 578, 278–283 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Koike, T. et al. Progressive differentiation toward the long-lived plasma cell compartment in the bone marrow. J. Exp. Med. https://doi.org/10.1084/jem.20221717 (2023).

  52. Chtanova, T. et al. Real-time interactive two-photon photoconversion of recirculating lymphocytes for discontinuous cell tracking in live adult mice. J. Biophotonics 7, 425–433 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Denk, W. et al. Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy. J. Neurosci. Methods 54, 151–162 (1994).

    Article  CAS  PubMed  Google Scholar 

  54. Svoboda, K., Denk, W., Kleinfeld, D. & Tank, D. W. In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385, 161–165 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    Article  CAS  PubMed  Google Scholar 

  56. Yuste, R. & Denk, W. Dendritic spines as basic functional units of neuronal integration. Nature 375, 682–684 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Lo Celso, C. et al. Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 457, 92–96 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Mazo, I. B. et al. Bone marrow is a major reservoir and site of recruitment for central memory CD8+ T cells. Immunity 22, 259–270 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Cavanagh, L. L. et al. Activation of bone marrow-resident memory T cells by circulating, antigen-bearing dendritic cells. Nat. Immunol. 6, 1029–1037 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Junt, T. et al. Dynamic visualization of thrombopoiesis within bone marrow. Science 317, 1767–1770 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Ortner, D. J. Identification of Pathological Conditions in Human Skeletal Remains 2nd edn (Academic Press, 2003).

  62. Lee, J. A. et al. Osteosarcoma of the flat bone. Jpn J. Clin. Oncol. 40, 47–53 (2010).

    Article  PubMed  Google Scholar 

  63. Schiff, D. & Bent, M. J. V. D. in Handbook of clinical neurology Ch. 14 (Elsevier, 2018).

  64. Daroff, R. B. & Bradley, W. G. (eds) Bradley’s Neurology in Clinical Practice 6th edn (Elsevier/Saunders, 2012).

  65. Green, D. E. & Rubin, C. T. Consequences of irradiation on bone and marrow phenotypes, and its relation to disruption of hematopoietic precursors. Bone 63, 87–94 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Pendleton, M. M. et al. Relations between bone quantity, microarchitecture, and collagen cross-links on mechanics following in vivo irradiation in mice. JBMR 5, e10545 (2021).

    CAS  Google Scholar 

  67. Wernle, J. D., Damron, T. A., Allen, M. J. & Mann, K. A. Local irradiation alters bone morphology and increases bone fragility in a mouse model. J. Biomech. 43, 2738–2746 (2010).

    Article  PubMed  Google Scholar 

  68. Nyaruba, M. M., Yamamoto, I., Kimura, H. & Morita, R. Bone fragility induced by X-ray irradiation in relation to cortical bone-mineral content. Acta Radiol. 39, 43–46 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Pendleton, M. M. et al. Effects of ex vivo ionizing radiation on collagen structure and whole-bone mechanical properties of mouse vertebrae. Bone 128, 115043 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Oest, M. E., Policastro, C. G., Mann, K. A., Zimmerman, N. D. & Damron, T. A. Longitudinal effects of single hindlimb radiation therapy on bone strength and morphology at local and contralateral sites. J. Bone Miner. Res. 33, 99–112 (2018).

    Article  PubMed  Google Scholar 

  71. Johansson, M. et al. Neonatal hematopoietic stem cell transplantation cures oc/oc mice from osteopetrosis. Exp. Hematol. 34, 242–249 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Johansson, M. K. et al. Hematopoietic stem cell-targeted neonatal gene therapy reverses lethally progressive osteopetrosis in oc/oc mice. Blood 109, 5178–5185 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Keshvari, S. et al. CSF1R-dependent macrophages control postnatal somatic growth and organ maturation. PLoS Genet. 17, e1009605 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Li, Y. et al. Raster adaptive optics for video rate aberration correction and large FOV multiphoton imaging. Biomed. Opt. Express 11, 1032–1042 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Horton, N. G. et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat. Photonics 7, 205–209 (2013).

  76. Rogers, M. J., Crockett, J. C., Coxon, F. P. & Monkkonen, J. Biochemical and molecular mechanisms of action of bisphosphonates. Bone 49, 34–41 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Jain, R. et al. Visualizing murine breast and melanoma tumor microenvironment using intravital multiphoton microscopy. STAR Protoc. 2, 100722 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Einhorn, T. A. & Gerstenfeld, L. C. Fracture healing: mechanisms and interventions. Nat. Rev. Rheumatol. 11, 45–54 (2015).

    Article  PubMed  Google Scholar 

  79. Zhao, Y. J. et al. Skull optical clearing window for in vivo imaging of the mouse cortex at synaptic resolution. Light Sci. Appl. 7, 17153 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Li, D. et al. A Through-Intact-Skull (TIS) chronic window technique for cortical structure and function observation in mice. eLight 2, 15 (2022).

    Article  Google Scholar 

  81. Feng, W., Liu, C. J., Wang, L. & Zhang, C. An optical clearing imaging window: realization of mouse brain imaging and manipulation through scalp and skull. J. Cereb. Blood Flow Metab. https://doi.org/10.1177/0271678X231167729 (2023).

  82. Burnett, S. H. et al. Conditional macrophage ablation in transgenic mice expressing a Fas-based suicide gene. J. Leukoc. Biol. 75, 612–623 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Clausen, B. E., Burkhardt, C., Reith, W., Renkawitz, R. & Forster, I. Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res. 8, 265–277 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Takito, J., Inoue, S. & Nakamura, M. The sealing zone in osteoclasts: a self-organized structure on the bone. Int. J. Mol. Sci. 19, 984 (2018).

Download references

Acknowledgements

We thank the staff of the Australian BioResource, Biological Testing Facility and Australian Cancer Research Foundation INCITe Centre for Intravital Imaging of Niches for Cancer Immune Therapy. This work is supported by the Australian NHMRC grants ID1155678 and ID2009010, the Mrs Janice Gibb and Ernest Heine Family Foundation, Peter and Val Duncan, Kedje Foundation, Cancer Institute New South Wales and the Australian Cancer Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

N.D.B., W.K., P.I.C. and T.G.P. conceived and designed experiments. T.G.P. developed the method. N.D.B. refined and improved the method. N.D.B., W.K., M.M.M., R.D., Y.X., R.C., A.K.G. and W.H.K. performed the experiments. L.C.D. and M.S. provided technical support. P.T., W.M.L., P.I.C. and T.G.P. supervized image processing and analysis. N.D.B., W.K., P.I.C. and T.G.P. wrote the manuscript. All authors have reviewed the manuscript.

Corresponding author

Correspondence to Tri Giang Phan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks David Fooksman, Masaru Ishii and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

McDonald, M. M. et al. Cell 184, 1330–1347.e13 (2021): https://doi.org/10.1016/j.cell.2021.02.002

Lawson, M. A. et al. Nat. Commun. 6, 8983 (2015): https://doi.org/10.1038/ncomms9983

Khoo, W. H. et al. Blood 134, 30–43 (2019): https://doi.org/10.1182/blood.2018880930

Supplementary information

Reporting Summary

Supplementary Video 1

Intravital imaging of steady-state osteoclast recycling related to Fig. 3. a, 3D rotation of the tibial bone (SHG, blue) surface. b, Video depicting osteoclast fission and fusion. Arrow denotes a fission and fusion event in an GFP+ (CSF1R, green) TOM+ (LysM, red) osteoclasts. c, Video depicting the cell fate mapping of segmented osteoclast surfaces, as denoted by the underground plots (UG) in Fig. 3b

Supplementary Video 2

Intravital imaging of steady-state osteoclast recycling in the proximal site of the tibia, related to the top of Fig. 4a,b. a, 3D rotation of the tibial bone (SHG, blue) surface and fused GFP+ (CSF1R, green), TOM+ (LysM, red) osteoclasts. b, Video depicting slower rates of osteoclast fission and fusion. c, Video depicting the cell fate mapping of segmented osteoclast surfaces, as denoted by the underground plots in

Supplementary Video 3

Intravital imaging of steady-state osteoclast recycling in the distal site of the tibia, related to the bottom of Fig. 4 a,b. a, 3D rotation of the tibial bone (SHG, blue) surface and fused GFP+ (CSF1R, green), TOM+ (LysM, red) osteoclasts. b, Video depicting accelerated rates of osteoclast fission and fusion. c, Video depicting the cell fate mapping of segmented osteoclast surfaces, as denoted by the underground plots in

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharyya, N.D., Kyaw, W., McDonald, M.M. et al. Minimally invasive longitudinal intravital imaging of cellular dynamics in intact long bone. Nat Protoc 18, 3856–3880 (2023). https://doi.org/10.1038/s41596-023-00894-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00894-9

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing