Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A workflow for the development of template-assisted membrane crystallization downstream processing for monoclonal antibody purification

Abstract

Monoclonal antibodies (mAbs) are commonly used biologic drugs for the treatment of diseases such as rheumatoid arthritis, multiple sclerosis, COVID-19 and various cancers. They are produced in Chinese hamster ovary cell lines and are purified via a number of complex and expensive chromatography-based steps, operated in batch mode, that rely heavily on protein A resin. The major drawback of conventional procedures is the high cost of the adsorption media and the extensive use of chemicals for the regeneration of the chromatographic columns, with an environmental cost. We have shown that conventional protein A chromatography can be replaced with a single crystallization step and gram-scale production can be achieved in continuous flow using the template-assisted membrane crystallization process. The templates are embedded in a membrane (e.g., porous polyvinylidene fluoride with a layer of polymerized polyvinyl alcohol) and serve as nucleants for crystallization. mAbs are flexible proteins that are difficult to crystallize, so it can be challenging to determine the optimal conditions for crystallization. The objective of this protocol is to establish a systematic and flexible approach for the design of a robust, economic and sustainable mAb purification platform to replace at least the protein A affinity stage in traditional chromatography-based purification platforms. The procedure provides details on how to establish the optimal parameters for separation (crystallization conditions, choice of templates, choice of membrane) and advice on analytical and characterization methods.

Key points

  • Monoclonal antibodies used in clinical applications need to be produced and purified at a gram scale. Purification by crystallization is less expensive and more environmentally sustainable than the standard chromatography approach. However, finding appropriate crystallization conditions is challenging.

  • In template-assisted crystallization, the template is a heteronucleant specifically designed to induce crystallization. In this approach, the template is attached to a membrane that is used, at scale, for osmotic membrane-assisted crystallization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A model showing the macromolecular Y-shaped structure of a mAb molecule formed of two Fab (fragment antigen binding) regions and one Fc (fragment crystallizable) region.
Fig. 2: TMC versus conventional chromatography-based DSP purification of mAbs.
Fig. 3: Workflow for TMC of mAbs in DSP.
Fig. 4: Nucleation rate of mAb crystals versus supersaturation.
Fig. 5: Phase diagram of anti-CD20 in 1% (vol/vol) PEG 400 and 0.1 M Na2SO4 solutions as crystallization agent, at pH 7.4 and 20 °C after 48 h under stirring conditions without templates.
Fig. 6: Examples of X-ray diffraction patterns obtained from anti-CD20 crystals.
Fig. 7: MIP results for template pore size determination.
Fig. 8: Images of a macroporous template particle.
Fig. 9: SEM images of polymer membranes at two different magnifications.
Fig. 10: Setup and results for the I04 beamline.
Fig. 11: Average size of crystallite domains, as determined by fitting radial diffraction profiles with a Gaussian function for peak at q = 0.11 Å−1.
Fig. 12: Crystal size distribution of anti-CD20 crystals obtained by TMC.
Fig. 13: Process variables measured in real time during a batch process.

Similar content being viewed by others

Data availability

Data supporting this publication are reported in ZENODO under reference codes https://doi.org/10.5281/zenodo.3856655, https://doi.org/10.5281/zenodo.3874571, https://doi.org/10.5281/zenodo.3245362, https://doi.org/10.5281/zenodo.2605199 and https://doi.org/10.5281/zenodo.1322662, and in the database SASBDB at the entry SASDMX3.

References

  1. Hughson, M. D., Cruz, T. A., Carvalho, R. J. & Castilho, L. R. Development of a 3-step straight-through purification strategy combining membrane adsorbers and resins. Biotechnol. Prog. 33, 931–940 (2017).

    CAS  PubMed  Google Scholar 

  2. Trnovec, H., Doles, T., Hribar, G., Furlan, N. & Podgornik, A. Characterization of membrane adsorbers used for impurity removal during the continuous purification of monoclonal antibodies. J. Chromatogr. A 1609, 460518 (2020).

    CAS  PubMed  Google Scholar 

  3. Shukla, A. A., Wolfe, L. S., Mostafa, S. S. & Norman, C. Evolving trends in mAb production processes. Bioeng. Transl. Med. 2, 58–69 (2017).

    PubMed  PubMed Central  Google Scholar 

  4. Liu, H. F., Ma, J., Winter, C. & Bayer, R. Recovery and purification process development for monoclonal antibody production. mAbs 2, 480–499 (2010).

    PubMed  PubMed Central  Google Scholar 

  5. dos Santos, R., Carvalho, A. L. & Roque, A. C. A. Renaissance of protein crystallization and precipitation in biopharmaceuticals purification. Biotechnol. Adv. 35, 41–50 (2017).

    PubMed  Google Scholar 

  6. Curtis, S., Lee, K., Blank, G. S., Brorson, K. & Xu, Y. Generic/matrix evaluation of SV40 clearance by anion exchange chromatography in flow-through mode. Biotechnol. Bioeng. 84, 179–186 (2003).

    CAS  PubMed  Google Scholar 

  7. Norling, L. et al. Impact of multiple re-use of anion-exchange chromatography media on virus removal. J. Chromatogr. A 1069, 79–89 (2005).

    CAS  PubMed  Google Scholar 

  8. Liu, H. F. et al. Exploration of overloaded cation exchange chromatography for monoclonal antibody purification. J. Chromatogr. A 1218, 6943–6952 (2011).

    CAS  PubMed  Google Scholar 

  9. Porath, J. Salt-promoted adsorption: recent developments. J. Chromatogr. B 376, 331–341 (1986).

    CAS  Google Scholar 

  10. Roper, D. K. & Lightfoot, E. N. Separation of biomolecules using adsorptive membranes. J. Chromatogr. A 702, 3–26 (1995).

    CAS  Google Scholar 

  11. Knudsen, H. L., Fahrner, R. L., Xu, Y., Norling, L. A. & Blank, G. S. Membrane ion-exchange chromatography for process-scale antibody purification. J. Chromatogr. A 907, 145–154 (2001).

    CAS  PubMed  Google Scholar 

  12. Lewis, U. J., Williams, D. E. & Brink, N. G. Pancreatic elastase: purification, properties, and function. J. Biol. Chem. 222, 705–720 (1956).

    CAS  PubMed  Google Scholar 

  13. Srivastava, O. P. & Aronson, A. I. Isolation and characterization of a unique protease from sporulating cells of Bacillus subtilis. Arch. Microbiol. 129, 227–232 (1981).

    CAS  PubMed  Google Scholar 

  14. Judge, R. A., Johns, M. R. & White, E. T. Protein purification by bulk crystallization: the recovery of ovalbumin. Biotechnol. Bioeng. 48, 316–323 (1995).

    CAS  PubMed  Google Scholar 

  15. Jacobsen, C., Garside, J. & Hoare, M. Nucleation and growth of microbial lipase crystals from clarified concentrated fermentation broths. Biotechnol. Bioeng. 57, 666–675 (1998).

    CAS  PubMed  Google Scholar 

  16. Peters, J., Minuth, T. & Schröder, W. Implementation of a crystallization step into the purification process of a recombinant protein. Protein Expr. Purif. 39, 43–53 (2005).

    CAS  PubMed  Google Scholar 

  17. Shah, U. V., Amberg, C., Diao, Y., Yang, Z. & Heng, J. Y. Heterogeneous nucleants for crystallogenesis and bioseparation. Curr. Opin. Chem. Eng. 8, 69–75 (2015).

    Google Scholar 

  18. Zang, Y., Kammerer, B., Eisenkolb, M., Lohr, K. & Kiefer, H. Towards protein crystallization as a process step in downstream processing of therapeutic antibodies: screening and optimization at microbatch scale. PLoS One 6, e25282 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Smejkal, B. et al. Fast and scalable purification of a therapeutic full-length antibody based on process crystallization. Biotechnol. Bioeng. 110, 2452–2461 (2013).

    CAS  PubMed  Google Scholar 

  20. Sommer, R. et al. Combined polyethylene glycol and CaCl2 precipitation for the capture and purification of recombinant antibodies. Process Biochem. 49, 2001–2009 (2014).

    CAS  Google Scholar 

  21. Oelmeier, S. A., Ladd-Effio, C. & Hubbuch, J. Alternative separation steps for monoclonal antibody purification: combination of centrifugal partitioning chromatography and precipitation. J. Chromatogr. A 1319, 118–126 (2013).

    CAS  PubMed  Google Scholar 

  22. Hammerschmidt, N., Hobiger, S. & Jungbauer, A. Continuous polyethylene glycol precipitation of recombinant antibodies: sequential precipitation and resolubilization. Process Biochem. 51, 325–332 (2016).

    CAS  Google Scholar 

  23. Sommer, R. et al. A. Capture and intermediate purification of recombinant antibodies with combined precipitation methods. Biochem. Eng. J. 93, 200–211 (2015).

    CAS  Google Scholar 

  24. Sim, S.-L. et al. Branched polyethylene glycol for protein precipitation. Biotechnol. Bioeng. 109, 736–746 (2012).

    CAS  PubMed  Google Scholar 

  25. Yang, H. et al. Optimization of vapor diffusion conditions for anti-CD20 crystallization and scale-up to Meso Batch. Crystals 9, 230 (2019).

    CAS  Google Scholar 

  26. McPherson, A. & Shlichta, P. Heterogeneous and epitxial nucleation of protein crystal on mineral surfaces. Science 239, 385–387 (1988).

    CAS  PubMed  Google Scholar 

  27. Hodzhaoglu, F. K., Kurniawan, F., Mirsky, V. & Nanev, C. Gold nanoparticles induce protein crystallization. Cryst. Res. Technol. 43, 588–593 (2008).

    CAS  Google Scholar 

  28. Dobrev, D., Baur, D. & Neumann, R. Crystallization of lysozyme in pores of etched heavy-ion tracks. Appl. Phys. A 80, 451–456 (2005).

    CAS  Google Scholar 

  29. Shah, U., Williams, D. & Heng, J. Y. Y. Selective crystallization of proteins using engineered nanonucleants. Cryst. Growth Des. 12, 1362–1369 (2012).

    CAS  Google Scholar 

  30. Chen, W. et al. High protein-loading silica template for heterogeneous protein crystallization. Cryst. Growth Des. 20, 866–873 (2020).

    CAS  Google Scholar 

  31. Bracewell, D. G., Pathak, M., Ma, G. & Rathore, A. S. Re-use of protein A resin: fouling and economics. BioPharm. Int. 28, 28–33 (2015).

    Google Scholar 

  32. Curcio, E., Di Profio, G. & Drioli, E. Membrane crystallization of macromolecular solutions. Desalination 145, 173 (2002).

    CAS  Google Scholar 

  33. Curcio, E., Di Profio, G. & Drioli, E. Recovery of fumaric acid by membrane crystallization in the production of l-malic acid. Sep. Pur. Technol. 33, 63 (2003).

    CAS  Google Scholar 

  34. Curcio, E., Di Profio, G. & Drioli, E. A new membrane-based crystallization technique: tests on lysozyme. J. Cryst. Growth 247, 166–176 (2003).

    CAS  Google Scholar 

  35. Curcio, E., Fontananova, E., Di Profio, G. & Drioli, E. Influence of the structural properties of poly(vinylidene fluoride) membranes on the heterogeneous nucleation rate of protein crystals. J. Phys. Chem. B 110, 12438 (2006).

    CAS  PubMed  Google Scholar 

  36. Curcio, E. et al. Membrane distillation operated at high seawater concentration factors: role of the membrane on CaCO3 scaling in presence of humic acid. J. Membr. Sci. 346, 263 (2010).

    CAS  Google Scholar 

  37. Curcio, E. et al. Membrane crystallization of lysozyme under forced solution flow. J. Membr. Sci. 257, 134 (2005).

    CAS  Google Scholar 

  38. Di Profio, G. et al. Fine dosage of antisolvent in the crystallization of l-histidine: effect on polymorphism. Cryst. Growth Des. 10, 449 (2010).

    Google Scholar 

  39. Di Profio, G., Curcio, E., Cassetta, A., Lamba, D. & Drioli, E. Membrane crystallization of lysozyme: kinetic aspects. J. Cryst. Growth 257, 359 (2003).

    Google Scholar 

  40. Di Profio, G., Curcio, E. & Drioli, E. Trypsin crystallization by membrane-based techniques. J. Struct. Biol. 150, 41 (2005).

    PubMed  Google Scholar 

  41. Di Profio, G., Curcio, E. & Drioli, E. Supersaturation control and heterogeneous nucleation in membrane crystallizers: facts and perspectives. Ind. Eng. Chem. Res. 49, 11878–11889 (2010).

    Google Scholar 

  42. Di Profio, G., Curcio, E., Ferraro, S., Stabile, C. & Drioli, E. Effect of supersaturation control and heterogeneous nucleation on porous membrane surfaces in the crystallization of l-glutamic acid polymorphs. Cryst. Growth Des. 9, 2179 (2009).

    Google Scholar 

  43. Di Profio, G. et al. Preparation of enzyme crystals with tunable morphology in membrane crystallizers. Ind. Eng. Chem. Res. 44, 10005 (2005).

    Google Scholar 

  44. Di Profio, G., Stabile, C., Caridi, A., Curcio, E. & Drioli, E. Antisolvent membrane crystallization of pharmaceutical compounds. J. Pharm. Sci. 98, 4902 (2009).

    PubMed  Google Scholar 

  45. Di Profio, G., Tucci, S., Curcio, E. & Drioli, E. Selective glycine polymorph crystallization by using microporous membranes. Cryst. Growth Des. 7, 526 (2007).

    Google Scholar 

  46. Di Profio, G., Tucci, S., Curcio, E. & Drioli, E. Controlling polymorphism with membrane-based crystallizers: application to form I and II of paracetamol. Chem. Mater. 19, 2386 (2007).

    Google Scholar 

  47. Ding, Z., Liu, L., El-Bourawi, M. S. & Ma, R. Analysis of a solar-powered membrane distillation system. Desalination 172, 27 (2005).

    CAS  Google Scholar 

  48. Drioli, E., Curcio, E., Criscuoli, A. & Di Profio, G. Integrated system for recovery of CaCO3, NaCl and MgSO4·7H2O from nanofiltration retentate. J. Membr. Sci. 239, 27 (2004).

    CAS  Google Scholar 

  49. Drioli, E., Curcio, E. & Di Profio, G. State of the art and recent progresses in membrane contactors. Chem. Eng. Res. Des. 83, 223 (2005).

    CAS  Google Scholar 

  50. Drioli, E., Curcio, E., Di Profio, G., Macedonio, F. & Criscuoli, A. Integrating membrane contactors technology and pressure-driven membrane operations for seawater desalination: energy, exergy and costs analysis. Chem. Eng. Res. Des. 84, 209 (2006).

    CAS  Google Scholar 

  51. Di Profio, G. et al. Tailored hydrogel membranes for efficient protein crystallization. Adv. Funct. Mater. 24, 1582–1590 (2014).

    Google Scholar 

  52. Drioli, E., Di Profio, G., Curcio, E. Membrane-Assisted Crystallization Technology, Advances in Chemical and Process Engineering 2 (Imperial College Press, 2015).

  53. Polino, M., Portugal, C. A. M., Di Profio, G., Coelhoso, I. M. & Crespo, J. G. Protein crystallization by membrane-assisted technology. Cryst. Growth Des. 19, 4871–4883 (2019).

    CAS  Google Scholar 

  54. Roque, A. C. A. et al. Anything but conventional chromatography approaches in bioseparation. Biotechnol. J. 15, 1900274 (2020).

    CAS  Google Scholar 

  55. Slabinski, L. et al. A web server for prediction of protein crystallizability. Bioinformatics 23, 3403–3405 (2008).

    Google Scholar 

  56. Kurgan, L. et al. CRYSTALP2: sequence-based protein crystallization propensity prediction. BMC Struct. Biol. 9, 50 (2009).

    PubMed  PubMed Central  Google Scholar 

  57. Goldschmidt, L., Derewenda, D. C. Z. & Eisenberg, D. Toward rational protein crystallization: a Web server for the design of crystallizable protein variants. Protein Sci. 16, 1569–1576 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Hammadi, Z. et al. Localizing and inducing primary nucleation. Faraday Discuss. 179, 489–501 (2015).

    CAS  PubMed  Google Scholar 

  59. Pantuso, E. et al. On the aggregation and nucleation mechanism of the monoclonal antibody anti-CD20 near liquid-liquid phase separation (LLPS). Sci. Rep. 10, 8902 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Chan, H. Y. & Lubchenko, V. A mechanism for reversible mesoscopic aggregation in liquid solutions. Nat. Commun. 10, 2381 (2019).

    PubMed  PubMed Central  Google Scholar 

  61. Shah, U. V. et al. Crystallization via novel 3D nanotemplates as a tool for protein purification and bio-separation. J. Cryst. Growth 469, 42–47 (2017).

    CAS  Google Scholar 

  62. Muschol, M. & Rosenberger, F. Liquid–liquid phase separation in supersaturated lysozyme solutions and associated precipitate formation/crystallization. J. Chem. Phys. 107, 1953–1962 (1997).

    CAS  Google Scholar 

  63. Chari, R., Jerath, K., Badkar, A. V. & Kalonia, D. S. Long- and short-range electrostatic interactions affect the rheology of highly concentrated antibody solutions. Pharm. Res. 26, 2607 (2009).

    CAS  PubMed  Google Scholar 

  64. Mahler, H.-C., Friess, W., Grauschopf, U. & Kiese, S. Protein aggregation: pathways, induction factors and analysis. J. Pharm. Sci. 98, 2909 (2009).

    CAS  PubMed  Google Scholar 

  65. Trilisky, E., Gillespie, R., Osslund, T. D. & Vunnum, S. Crystallization and liquid-liquid phase separation of monoclonal antibodies and Fc-fusion proteins: screening results. Biotechnol. Prog. 27, 1054–1067 (2011).

    CAS  PubMed  Google Scholar 

  66. Lewus, R. A., Darcy, P. A., Lenhoff, A. M. & Sandler, S. I. Interactions and phase behavior of a monoclonal antibody. Biotechnol. Prog. 27, 280–289 (2011).

    CAS  PubMed  Google Scholar 

  67. Dumetz, A. C., Lewus, R. A., Lenhoff, A. M. & Kaler, E. W. Effects of ammonium sulfate and sodium chloride concentration on PEG/protein liquid-liquid phase separation. Langmuir 24, 10345–10351 (2008).

    CAS  PubMed  Google Scholar 

  68. Roberts, C. J., Das, T. K. & Sahin, E. Predicting solution aggregation rates for therapeutic proteins: approaches and challenges. Int. J. Pharm. 418, 318 (2011).

    CAS  PubMed  Google Scholar 

  69. Velev, O. D., Kaler, E. W. & Lenhoff, A. M. Protein interactions in solution characterized by light and neutron scattering: comparison of lysozyme and chymotrypsinogen. Biophys. J. 75, 2682 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Neal, B. L., Asthagiri, D. & Lenhoff, A. M. Molecular origins of osmotic second virial coefficients of proteins. Biophys. J. 75, 2469 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. George, A. & Wilson, W. W. Predicting protein crystallization from a dilute solution property. Acta Crystallogr. D. 50, 361–365 (1994).

    CAS  PubMed  Google Scholar 

  72. Haas, C. & Drenth, J. The protein–water phase diagram and the growth of protein crystals from aqueous solution. J. Phys. Chem. B 102, 4226 (1998).

    CAS  Google Scholar 

  73. Hassan, P. A., Rana, S. & Verma, G. Making sense of Brownian motion: colloid characterization by dynamic light scattering. Langmuir 31, 3–12 (2015).

    CAS  PubMed  Google Scholar 

  74. Zhang, J. & Liu, X. Y. Effect of protein–protein interactions on protein aggregation kinetics. J. Chem. Phys. 119, 10972–10976 (2003).

    CAS  Google Scholar 

  75. Harding, S. E. & Johnson, P. The concentration-dependence of macromolecular parameters. Biochem. J. 231, 543–547 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Wilson, W. W. Monitoring crystallization experiments using dynamic light scattering: assaying and monitoring protein crystallization in solution. Methods 1, 110–117 (1990).

    CAS  Google Scholar 

  77. Wu, G. et al. Elucidating the weak protein–protein interaction mechanisms behind the liquid–liquid phase separation of a mAb solution by different types of additives. Eur. J. Pharm. Biopharm. 120, 1–8 (2017).

    PubMed  Google Scholar 

  78. Veesler, S., Revalor, E., Bottini, O. & Hoff, C. Crystallization in the presence of a liquid–liquid phase separation. Org. Process Res. Dev. 10, 841–845 (2006).

    CAS  Google Scholar 

  79. Duffy, D. et al. In situ monitoring, control and optimization of a liquid–liquid phase separation crystallization. Chem. Eng. Sci. 77, 112–121 (2012).

    CAS  Google Scholar 

  80. Chen, W., Karde, V., Cheng, T. N., Ramli, S. S. & Heng, J. Y. Surface hydrophobicity: effect of alkyl chain length and network homogeneity. Front. Chem. Sci. Eng. 15, 1–9 (2020).

    Google Scholar 

  81. Chayen, N. E., Saridakis, E., El-Bahar, R. & Nemirovsky, Y. Porous silicon: an effective nucleation-inducing material for protein crystallization. J. Mol. Biol. 312, 591–595 (2001).

    CAS  PubMed  Google Scholar 

  82. Chayen, N. E., Saridakis, E. & Sear, R. P. Experiment and theory for heterogeneous nucleation of protein crystals in a porous medium. Proc. Natl Acad. Sci. USA 103, 597–601 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Page, A. J. & Sear, R. P. Heterogeneous nucleation in and out of pores. Phys. Rev. Lett. 97, 065701 (2006).

    PubMed  Google Scholar 

  84. Artusio, F. & Pisano, R. Surface-induced crystallization of pharmaceuticals and biopharmaceuticals: a review. Int. J. Pharm. 547, 190–208 (2018).

    CAS  PubMed  Google Scholar 

  85. Nanev, C. N., Saridakis, E. & Chayen, N. E. Protein crystal nucleation in pores. Sci. Rep. 7, 35821 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Lam, J. & Lutsko, J. F. Solute particle near a nanopore: influence of size and surface properties on the solvent-mediated forces. Nanoscale 9, 17099–17108 (2017).

    CAS  PubMed  Google Scholar 

  87. Zhang, S.-Q. & Cheung, M. S. Manipulating biopolymer dynamics by anisotropic nanoconfinement. Nano Lett. 7, 3438–3442 (2007).

    CAS  PubMed  Google Scholar 

  88. van Meel, J. A., Sear, R. P. & Frenkel, D. Design principles for broad-spectrum protein-crystal nucleants with nanoscale pits. Phys. Rev. Lett. 105, 205501 (2010).

    PubMed  Google Scholar 

  89. Galkin, O. & Vekilov, P. G. Nucleation of protein crystals: critical nuclei, phase behavior, and control pathways. J. Cryst. Growth 232, 63–76 (2001).

    CAS  Google Scholar 

  90. Leng, J. & Salmon, J.-B. Microfluidic crystallization. Lab Chip 9, 24–34 (2009).

    CAS  PubMed  Google Scholar 

  91. Li, L. & Ismagilov, R. F. Protein crystallization using microfluidic technologies based on valves, droplets, and SlipChip. Annu. Rev. Biophys. 39, 139–158 (2010).

    CAS  PubMed  Google Scholar 

  92. Candoni, N., Grossier, R., Lagaize, M. & Veesler, S. Advances in the use of microfluidics to study crystallization fundamentals. Ann. Rev. Chem. Biomol. Eng. 10, 59–83 (2019).

    Google Scholar 

  93. Gerard, C. J. J. et al. Template-assisted crystallization behavior in stirred solutions of the monoclonal antibody anti-CD20: probability distributions of induction times. Cryst. Growth Des. 22, 3637–3645 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. McPherson, A. in Protein Crystallography (eds. Wlodawer, A., Dauter, Z. & Jaskolski, M.) 17–50 (Springer, 2017).

  95. Strathmann, H., Giorno, L. & Drioli, E. in Comprehensive Membrane (eds. Drioli, E., Giorno, L.) 91−111 (Elsevier, 2010).

  96. Figoli, A. et al. in Membrane Fabrication (eds. Hilal, N., Ismail, A. F. & Wright, C.) (CRC Press, 2015).

  97. Meringolo, C. et al. Tailoring PVDF membranes surface topography and hydrophobicity by a sustainable two-steps phase separation process. ACS Sustain. Chem. Eng. 6, 10069–10077 (2018).

    CAS  Google Scholar 

  98. Salehi, S. M. et al. Hydrogel composite membranes incorporating iron oxide nanoparticles as topographical designers for controlled heteronucleation of proteins. Cryst. Growth Des. 18, 3317–3327 (2018).

    Google Scholar 

  99. Meringolo, C. et al. Exploiting fluoropolymers immiscibility to tune surface properties and mass transfer in blend membranes for membrane contactor applications. ACS Appl. Polym. Mater. 1, 326–334 (2019).

    CAS  Google Scholar 

  100. Curcio, E., Curcio, V., Di Profio, G., Fontananova, E. & Drioli, E. Energetics of protein nucleation on rough polymeric surfaces. J. Phys. Chem. B 114, 13650–13655 (2010).

    CAS  PubMed  Google Scholar 

  101. Cassie, B. D. B. & Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551 (1944).

    CAS  Google Scholar 

  102. Curcio, E., Di Profio, G. & Drioli, E. in Comprehensive Membrane Science and Engineering Vol. 4, Ch. 4.01, 1−20 (Elsevier, 2010).

  103. Alkhudhiri, A., Darwish, N. & Hilal, H. Membrane distillation: a comprehensive review. Desalination 287, 2–18 (2012).

    CAS  Google Scholar 

  104. Liu, Y.-X., Wang, X.-J., Lu, J. & Ching, C. B. Influence of the roughness, topography, and physicochemical properties of chemically modified surfaces on the heterogeneous nucleation of protein crystals. J. Phys. Chem. B 111, 13971–13978 (2007).

    CAS  PubMed  Google Scholar 

  105. Drioli, E., Criscuoli, A. & Curcio, E. Membrane Contactors: Fundamentals Applications and Potentialities (Elsevier, 2011).

  106. Vitola, G., Mazzei, R., Fontananova, E. & Giorno, L. PVDF membrane biofunctionalization by chemical grafting. J. Membr. Sci. 476, 483–489 (2015).

    CAS  Google Scholar 

  107. Liu, F., Hashim, N. A., Liu, Y., Abed, M. R. M. & Li, K. Progress in the production and modification of PVDF membranes. J. Membr. Sci. 375, 1–27 (2011).

    CAS  Google Scholar 

  108. Patterson, A. The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978–982 (1939).

    CAS  Google Scholar 

  109. The CMC Biotech Working Group. A-Mab: a case study in bioprocess development. https://qbdworks.com/storage/2014/06/A-MabCaseStudyVersion.pdf (2009).

  110. Lacher, N. A. et al. Development, validation, and implementation of capillary gel electrophoresis as a replacement for SDS-PAGE for purity analysis of IgG2 mAbs. J. Sep. Sci. 33, 218–227 (2010).

    CAS  PubMed  Google Scholar 

  111. Yao, H., Wynendaele, E., Xu, X., Kosgei, A. & De Spiegeleer, B. Circular dichroism in functional quality evaluation of medicines. J. Pharm. Biomed. Anal. 147, 50–64 (2018).

    CAS  PubMed  Google Scholar 

  112. Tscheliessnig, A. L., Konrath, J., Bates, R. & Jungbauer, A. Host cell protein analysis in therapeutic protein bioprocessing–methods and applications. Biotechnol. J. 8, 655–670 (2013).

    CAS  PubMed  Google Scholar 

  113. Ruppach, H. Log10 reduction factors in viral clearance studies. BioProcess. J. 12, 24–30 (2014).

    Google Scholar 

  114. Orchard, J. D. et al. Using a noninfectious MVM surrogate for assessing viral clearance during downstream process development. Biotechnol. Prog. 36, e2921 (2019).

    PubMed  Google Scholar 

  115. Dreckmann, T., Boeuf, J., Ludwig, I.-S., Lümkemann, J. & Huwyler, J. Low volume aseptic filling: Impact of pump systems on shear stress. Eur. J. Pharm. Biopharm. 147, 10–18 (2020).

    CAS  PubMed  Google Scholar 

  116. Sparks, T. C. in Filters and Filtration Handbook 5th edn. (eds. Sparks, T. & Chase, G.) Section 5, 297–359 (Butterworth–Heinemann, 2016).

  117. Dao, L., Nguyen, H. & Mai, H. A fiber optic turbidity system for in-situ monitoring protein aggregation, nucleation and crystallization. Acta Astronautica 47, 399–409 (2000).

    Google Scholar 

  118. Huffman, S., Soni, K. & Ferraiolo, J. UV-Vis based determination of protein concentration: Validating and implementing slope measurements using variable pathlength technology. Bioprocess. Int. 12, 66–72 (2014).

    CAS  Google Scholar 

  119. AMECRYS. Deliverable D2.2 HEL4 domain fragment & anti-CD20 mAb process specification report. https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5b99e2bac&appId=PPGMS (2018).

  120. Grottshalk, U. Process Scale Purification of Antibodies 2nd edn. (John Wiley, 2017).

  121. Godavarti, R., Tugcu, N., Kumar, V. & Rathore, A. Evolution of the monoclonal antibody purification platform. BioPharm. Int. 26, 32–37 (2013).

    Google Scholar 

  122. Cytiva. Affinity Chromatography Vol. 1 https://cdn.cytivalifesciences.com/api/public/content/digi-11660-pdf (2021).

  123. Smith, M. R. Rituximab (monoclonal anti-CD20 antibody): mechanisms of action and resistance. Oncogene 22, 7359–7368 (2003).

    CAS  PubMed  Google Scholar 

  124. Pescovitz, M. D. Rituximab, an anti-CD20 monoclonal antibody: history and mechanism of action. Am. J. Transplant. 6, 859–866 (2006).

    CAS  PubMed  Google Scholar 

  125. de Araujo Sampaio, D. et al. Aqueous two-phase (polyethylene glycol+sodium sulfate) system for caffeine extraction: equilibrium diagrams and partitioning study. J. Chem. Thermodynam. 98, 86–94 (2016).

    Google Scholar 

  126. Chayen, N. E., Shaw Stewart, P. D., Maeder, D. L. & Blow, D. M. An automated system for micro-batch protein crystallization and screening. J. Appl. Crystallogr. 23, 297–302 (1990).

    CAS  Google Scholar 

  127. Carter, C. W. & Carter, C. W. Protein crystallization using incomplete factorial-experiments. J. Biol. Chem. 254, 2219–2223 (1979).

    Google Scholar 

  128. Jancarik, J. & Kim, S.-H. Sparse matrix sampling. A screening method for crystallization of proteins. J. Appl. Crystallogr. 24, 409–411 (1991).

    CAS  Google Scholar 

  129. Cudney, R., Patel, S., Weisgraber, K., Newhouse, Y. & McPherson, A. Screening and optimization strategies for macromolecular crystal growth. Acta Crystallogr. D. 50, 414–423 (1994).

    CAS  PubMed  Google Scholar 

  130. Mullin, J. W. W. Crystallization 4th edn. (Butterworth–Heinemann, 2001).

  131. Asenjo, J. A. A. & Andrews, B. A. Aqueous two-phase systems for protein separation: phase separation and applications. J. Chromatogr. A 1238, 1–10 (2012).

    CAS  PubMed  Google Scholar 

  132. Kuznetsov, Y. G., Malkin, A. J. & McPherson, A. The liquid protein phase in crystallization: a case study—intact immunoglobulins. J. Cryst. Growth 232, 30–39 (2001).

    CAS  Google Scholar 

  133. Chen, Q., Vekilov, P. G., Nagel, R. L. & Hirsch, R. E. Liquid–liquid phase separation in hemoglobins: distinct aggregation mechanisms of the b6 mutants. Biophys. J. 86, 1702–1712 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Chi, E. Y., Krishnan, S., Randolph, T. W. & Carpenter, J. F. Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation. Pharm. Res. 20, 1325–1336 (2003).

    CAS  PubMed  Google Scholar 

  135. Bajaj, H. et al. Protein structural conformation and not second virial coefficient relates to long-term irreversible aggregation of a monoclonal antibody and ovalbumin in solution. Pharm. Res. 23, 1382–1394 (2006).

    CAS  PubMed  Google Scholar 

  136. Nanev, C. N. On the slow kinetics of protein crystallization. Cryst. Growth Des. 7, 1533–1540 (2007).

    CAS  Google Scholar 

  137. McPherson, A. Introduction to protein crystallization. Methods 34, 254–265 (2004).

    CAS  PubMed  Google Scholar 

  138. Belviso, B. D. et al. Structural characterization of the full-length anti-CD20 antibody Rituximab. Front. Mol. Biosci. 9, 823174 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Ali, I. B. et al. Assessment of blend PVDF membranes, and the effect of polymer concentration and blend composition. Membranes 8, 13 (2018).

    PubMed  PubMed Central  Google Scholar 

  140. Wu, P., Jiang, L. Y. & Hu, B. Fabrication of novel PVDF/P(VDF-co-HFP) blend hollow fiber membranes for DCMD. J. Membr. Sci. 566, 442–454 (2018).

    CAS  Google Scholar 

  141. Yi, K. et al. Diffusion coefficients of dimethyl sulfoxide (DMSO) and H2O in PAN wet spinning and its influence on morphology of nascent polyacrylonitrile (PAN) fiber. J. Eng. Fib. Fabr. 8, 107–113 (2013).

    CAS  Google Scholar 

  142. Fontananova, E., Jansen, J. C., Cristiano, A., Curcio, E. & Drioli, E. Effect of additives in the casting solution on the formation of PVDF membranes. Desalination 192, 190–197 (2006).

    CAS  Google Scholar 

  143. Lu, X. et al. Amphiphobic PVDF composite membranes for anti-fouling direct contact membrane distillation. J. Memb. Sci. 505, 61–69 (2016).

    CAS  Google Scholar 

  144. Shah, U. V., Parambil, J. V., Williams, D. R., Hinder, S. J. & Heng, J. Y. Y. Preparation and characterisation of 3D nanotemplates for protein crystallization. Powder Technol. 282, 10–18 (2015).

    CAS  Google Scholar 

  145. Bonchio, M., Carraro, M., Scorrano, G., Fontananova, E. & Drioli, E. Heterogeneous photooxidation of alcohols in water by photocatalytic membranes incorporating decatungstate. Adv. Synth. Catal. 345, 1119–1126 (2003).

    CAS  Google Scholar 

  146. Sugiyama, S. M. et al. Growth of protein crystals in hydrogels prevents osmotic shock. J. Am. Chem. Soc. 134, 5786–5789 (2012).

    CAS  PubMed  Google Scholar 

  147. Caliandro, R. & Belviso, D. B. RootProf: software for multivariate analysis of unidimensional profiles. J. Appl. Cryst. 47, 1087–1096 (2014).

    CAS  Google Scholar 

Download references

Acknowledgements

This work has received financial support from the European Union’s Horizon 2020 FET-OPEN research and innovation program within the AMECRYS project (http://www.amecrys-project.eu/) under grant agreement no. 712965.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to developing this protocol and writing, refining and revising this paper. G.D.P. coordinated the AMECRYS project.

Corresponding author

Correspondence to Gianluca Di Profio.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Dorota Antos and Gaohong He for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Meringolo, C. et al. ACS Sustain. Chem. Eng. 6, 10069–10077 (2018): https://doi.org/10.1021/acssuschemeng.8b01407

Meringolo, C. et al. ACS Appl. Polym. Mater. 1, 326–334 (2019): https://doi.org/10.1021/acsapm.8b00105

Yang, H. et al. Crystals 9, 230 (2019): https://doi.org/10.3390/cryst9050230

Pantuso, E. et al. Sci. Rep. 10, 8902 (2020): https://doi.org/10.1038/s41598-020-65776-6

Chen, W. et al. Cryst. Growth Des. 20, 866–873 (2020): https://doi.org/10.1021/acs.cgd.9b01252

Gerard, C. J. J. et al. Cryst. Growth Des. 22, 3637–3645 (2022): https://doi.org/10.1021/acs.cgd.1c01324

Belviso, B. D. et al. Front. Mol. Biosci. 9, 823174 (2022): https://doi.org/10.3389/fmolb.2022.823174

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajoub, N., Gerard, C.J.J., Pantuso, E. et al. A workflow for the development of template-assisted membrane crystallization downstream processing for monoclonal antibody purification. Nat Protoc 18, 2998–3049 (2023). https://doi.org/10.1038/s41596-023-00869-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00869-w

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing