Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Large-scale growth of C. elegans and isolation of membrane protein complexes

Abstract

Purification of membrane proteins for biochemical and structural studies is commonly achieved by recombinant overexpression in heterologous cell lines. However, many membrane proteins do not form a functional complex in a heterologous system, and few methods exist to purify sufficient protein from a native source for use in biochemical, biophysical and structural studies. Here, we provide a detailed protocol for the isolation of membrane protein complexes from transgenic Caenorhabditis elegans. We describe how to grow a genetically modified C. elegans line in abundance using standard laboratory equipment, and how to optimize purification conditions on a small scale using fluorescence-detection size-exclusion chromatography. Optimized conditions can then be applied to a large-scale preparation, enabling the purification of adequate quantities of a target protein for structural, biochemical and biophysical studies. Large-scale worm growth can be accomplished in ~9 d, and each optimization experiment can be completed in less than 1 d. We have used these methods to isolate the transmembrane channel-like protein 1 complex, as well as three additional protein complexes (transmembrane-like channel 2, lipid transfer protein and ‘Protein S’), from transgenic C. elegans, demonstrating the utility of this approach in purifying challenging, low-abundance membrane protein complexes.

Key points

  • This protocol outlines the isolation of membrane protein complexes from transgenic C. elegans

  • The primary advantage of the protocol is that it enables isolation of sufficient quantities of low-abundance native membrane protein complexes for use in structural, biochemical or biophysical studies

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of large-scale worm growth and protein isolation.
Fig. 2: Diverse membrane protein complexes are amenable to isolation from transgenic C. elegans.
Fig. 3: Identifying regions of TMC-1–mVenus expression using spectral imaging and linear unmixing.
Fig. 4: Optimization of large-scale worm growth.
Fig. 5: Optimization of worm lysis and protein purification.
Fig. 6: Use of FSEC to estimate TMC-1 quality and quantity.

Similar content being viewed by others

Data availability

All data generated or analyzed during this work are included in the published article.

References

  1. Lishko, P. V. & Mannowetz, N. CatSper: a unique calcium channel of the sperm flagellum. Curr. Opin. Physiol. 2, 109–113 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Akopian, A. N., Chen, C. C., Ding, Y., Cesare, P. & Wood, J. N. A new member of the acid-sensing ion channel family. Neuroreport 11, 2217–2222 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Kefauver, J. M., Ward, A. B. & Patapoutian, A. Discoveries in structure and physiology of mechanically activated ion channels. Nature 587, 567–576 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schwartz, V., Friedrich, K., Polleichtner, G. & Grunder, S. Acid-sensing ion channel (ASIC) 4 predominantly localizes to an early endosome-related organelle upon heterologous expression. Sci. Rep. 5, 18242 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Soler, D. C. et al. An uncharacterized region within the N-terminus of mouse TMC1 precludes trafficking to plasma membrane in a heterologous cell line. Sci. Rep. 9, 15263 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kohl, K. et al. Plate-based large-scale cultivation of Caenorhabditis elegans: sample preparation for the study of metabolic alterations in diabetes. J. Vis. Exp. https://doi.org/10.3791/58117 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Heshof, R., Visscher, B., Promel, S. & Hughes, S. Large-scale cultivation of Caenorhabditis elegans in a bioreactor using a labor-friendly fed-batch approach. Biotechniques 67, 33–39 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Kawate, T. & Gouaux, E. Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14, 673–681 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Goehring, A. et al. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies. Nat. Protoc. 9, 2574–2585 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chatzigeorgiou, M., Bang, S., Hwang, S. W. & Schafer, W. R. tmc-1 encodes a sodium-sensitive channel required for salt chemosensation in C. elegans. Nature 494, 95–99 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dao, J., Lee, A., Drecksel, D. K., Bittlingmaier, N. M. & Nelson, T. M. Characterization of TMC-1 in C. Elegans sodium chemotaxis and sodium conditioned aversion. BMC Genet. 21, 37 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang, L. et al. TMC-1 attenuates C. elegans development and sexual behaviour in a chemically defined food environment. Nat. Commun. 6, 6345 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, X., Li, G., Liu, J., Liu, J. & Xu, X. Z. TMC-1 mediates alkaline sensation in C. elegans through nociceptive neurons. Neuron 91, 146–154 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tang, Y. Q. et al. Ankyrin is an intracellular tether for TMC mechanotransduction channels. Neuron 107, 112–125 e110 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kaulich, E., Walker, D. S., Tang, Y. Q. & Schafer, W. R. The Caenorhabditis elegans tmc-1 is involved in egg-laying inhibition in response to harsh touch. MicroPubl Biol. 2021. https://doi.org/10.17912/micropub.biology.000439 (2021).

  16. Wu, J. et al. GABA signaling triggered by TMC-1/Tmc delays neuronal aging by inhibiting the PKC pathway in C. elegans. Sci. Adv. 8, eadc9236 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jeong, H. et al. Structures of the TMC-1 complex illuminate mechanosensory transduction. Nature 610, 796–803 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dickinson, D. J. & Goldstein, B. CRISPR-based methods for Caenorhabditis elegans genome engineering. Genetics 202, 885–901 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Praitis, V., Casey, E., Collar, D. & Austin, J. Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genetics 157, 1217–1226 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zanin, E. et al. Affinity purification of protein complexes in C. elegans. Methods Cell Biol. 106, 289–322 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yue, X. et al. TMC proteins modulate egg laying and membrane excitability through a background leak conductance in C. elegans. Neuron 97, 571–585 e575 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, C. et al. A conserved megaprotein-based molecular bridge critical for lipid trafficking and cold resilience. Nat. Commun. 13, 6805 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Caravaca, J. M. & Lei, E. P. Maintenance of a Drosophila melanogaster population cage. J. Vis. Exp. https://doi.org/10.3791/53756 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Avdesh, A. et al. Regular care and maintenance of a zebrafish (Danio rerio) laboratory: an introduction. J. Vis. Exp. https://doi.org/10.3791/4196 (2012).

  25. Panneels, V. & Sinning, I. Membrane protein expression in the eyes of transgenic flies. Methods Mol. Biol. 601, 135–147 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Panneels, V., Kock, I., Krijnse-Locker, J., Rezgaoui, M. & Sinning, I. Drosophila photoreceptor cells exploited for the production of eukaryotic membrane proteins: receptors, transporters and channels. PLoS One 6, e18478 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl Acad. Sci. USA 109, E2579–E2586 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Clokey, G. V. & Jacobson, L. A. The autofluorescent “lipofuscin granules” in the intestinal cells of Caenorhabditis elegans are secondary lysosomes. Mech. Ageing Dev. 35, 79–94 (1986).

    Article  CAS  PubMed  Google Scholar 

  32. Zimmermann, T., Marrison, J., Hogg, K. & O'Toole, P. Clearing up the signal: spectral imaging and linear unmixing in fluorescence microscopy. Methods Mol. Biol. 1075, 129–148 (2014).

    Article  PubMed  Google Scholar 

  33. Teuscher, A. C. & Ewald, C. Y. Overcoming autofluorescence to assess GFP expression during normal physiology and aging in Caenorhabditis elegans. Bio. Protoc. https://doi.org/10.21769/BioProtoc.2940 (2018).

  34. Lambert, T. J. FPbase: a community-editable fluorescent protein database. Nat. Methods 16, 277–278 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Stiernagle, T. Maintenance of C. elegans http://www.wormbook.org (2006).

  36. Hibshman, J. D., Webster, A. K. & Baugh, L. R. Liquid-culture protocols for synchronous starvation, growth, dauer formation, and dietary restriction of Caenorhabditis elegans. STAR Protoc. 2, 100276 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Porta-de-la-Riva, M., Fontrodona, L., Villanueva, A. & Ceron, J. Basic Caenorhabditis elegans methods: synchronization and observation. J. Vis. Exp https://doi.org/10.3791/4019 (2012).

  38. Allen, P. C. New extraction method for nematode lipids. Anal. Biochem. 45, 253–259 (1972).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Gouaux, Aballay and Baconguis laboratories for helpful discussions; S. Petrie and B. Jenkins for help with worm spectral imaging; A. Chinn and M. Frisbie for help with worm growth; R. Hallford for proof reading and M. Freeman for suggesting studies on LPD-3. This work was supported by National Institutes of Health grant 1F32DC017894 to S.C. E.G. gratefully acknowledges J. LaCroute and B. LaCroute for support, and is an investigator of the HHMI.

Author information

Authors and Affiliations

Authors

Contributions

S.C., H.J. and A.G. performed the experiments. S.C., H.J., A.G. and Y.K., together with E.G., designed the project and wrote the manuscript. All authors contributed to manuscript preparation.

Corresponding author

Correspondence to Eric Gouaux.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks HaoSheng Sun and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references

Jeong, H. et al. Nature 610, 796–803 (2022): https://doi.org/10.1038/s41586-022-05314-8

Extended data

Extended Data Fig. 1 Comparison of sonication and cryo-bead milling methods for lysis of C. elegans.

Representative FSEC trace of affinity purified TMC-2-mVenus isolated from worms that were either lysed with cryo-bead milling (black traces) or sonication (blue traces). Data from three separate worm harvests are shown to illustrate that cryo-bead milling reproducibly results in a higher ratio of TMC-2 dimer to monomer.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clark, S., Jeong, H., Goehring, A. et al. Large-scale growth of C. elegans and isolation of membrane protein complexes. Nat Protoc 18, 2699–2716 (2023). https://doi.org/10.1038/s41596-023-00852-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00852-5

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing