Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Structural characterization of protein-material interfacial interactions using lysine reactivity profiling-mass spectrometry

Abstract

Understanding how proteins and materials interact is useful for evaluating the safety of biomedical micro/nanomaterials, toxicity estimation and design of nano-drugs and catalytic activity improvement of bio-inorganic functional hybrids. However, characterizing the interfacial molecular details of protein-micro/nanomaterial hybrids remains a great challenge. This protocol describes the lysine reactivity profiling-mass spectrometry strategy for determining which parts of a protein are interacting with the micro/nanomaterials. Lysine residues occur frequently on hydrophilic protein surfaces, and their reactivity is dependent on the accessibility of their amine groups. The accessibility of a lysine residue is lower when it is in contact with another object; allosteric effects resulting from this interaction might reduce or increase the reactivity of remote lysine residues. Lysine reactivity is therefore a useful indicator of protein localization orientation, interaction sequence regions, binding sites and modulated protein structures in the protein-material hybrids. We describe the optimized two-step isotope dimethyl labeling strategy for protein-material hybrids under their native and denaturing conditions in sequence. The comparative quantification results of lysine reactivity are only dependent on the native microenvironments of lysine local structures. We also highlight other critical steps including protein digestion, elution from materials, data processing and interfacial structure analysis. The two-step isotope labeling steps need ~5 h, and the whole protocol including digestion, liquid chromatography-tandem mass spectrometry, data processing and structure analysis needs ~3–5 d.

Key points

  • Lysine residues occur frequently on hydrophilic protein surfaces. The reactivity of lysine residues to dimethylation depends on their accessibility. Reaction conditions can be optimized such that the heterogeneity of lysine reactivity is reflected by labeling efficiency.

  • In combination with mass spectrometry, this approach—lysine residue profiling-mass spectrometry—can be used to determine interfacial molecular details for protein-protein and protein-material complexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The workflow for structural characterization of protein-material interfacial interactions using lysine reactivity profiling-mass spectrometry.
Fig. 2: Overview of the MaxQuant workflow.
Fig. 3: MaxQuant screenshot showing settings for the modification configurations of isotope dimethyl labeling in LRP-MS.
Fig. 4: Representative mass spectra of peptides with different dimethylation forms and NLE values in LRP-MS analysis of the free HSA and HSA-SiO2 hybrids.
Fig. 5: Interfacial molecular structure characterization of spike protein S1 RBD-CIPS.
Fig. 6: The interfacial molecular structure characterization of PSII-Ru/SrTiO3:Rh and PSII-Ru2S3/CdS hybrids.

Similar content being viewed by others

Data availability

The key data used in this protocol as examples or anticipated results are available within the paper and at https://doi.org/10.5281/zenodo.7697479. All relevant figures are available within the paper and at https://doi.org/10.6084/m9.figshare.22199440. Any additional data that supports the findings can be provided from the corresponding author upon request.

References

  1. Tsapikouni, T. S. & Missirlis, Y. F. Protein–material interactions: from micro-to-nano scale. Mater. Sci. Eng. B 152, 2–7 (2008).

    Article  CAS  Google Scholar 

  2. Park, S. & Hamad-Schifferli, K. Nanoscale interfaces to biology. Curr. Opin. Chem. Biol. 14, 616–622 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang, Y., Cai, R. & Chen, C. The nano–bio interactions of nanomedicines: understanding the biochemical driving forces and redox reactions. Acc. Chem. Res. 52, 1507–1518 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Wang, J., Quershi, W. A., Li, Y., Xu, J. & Nie, G. Analytical methods for nano-bio interface interactions. Sci. China Chem. 59, 1467–1478 (2016).

    Article  CAS  Google Scholar 

  5. Wang, X. et al. Probing adsorption behaviors of BSA onto chiral surfaces of nanoparticles. Small 14, e1703982 (2018).

    Article  PubMed  Google Scholar 

  6. Pastore, C. Size-dependent nano–bio interactions. Nat. Nanotechnol. 16, 1052 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Yu, L. et al. Highly efficient artificial blood coagulation shortcut confined on Ca-zeolite surface. Nano Res. 14, 3309–3318 (2021).

    Article  CAS  Google Scholar 

  8. He, M. et al. The interfacial interactions of nanomaterials with human serum albumin. Anal. Bioanal. Chem. 414, 4677–4684 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, G. et al. A nanomaterial targeting the spike protein captures SARS-CoV-2 variants and promotes viral elimination. Nat. Nanotechnol. 17, 993–1003 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Shang, X. et al. Unusual zymogen activation patterns in the protein corona of Ca-zeolites. Nat. Catal. 4, 607–614 (2021).

    Article  CAS  Google Scholar 

  11. He, M. et al. Characterization and manipulation of the photosystem II-semiconductor interfacial molecular interactions in solar-to-chemical energy conversion. J. Energy Chem. 70, 437–443 (2022).

    Article  CAS  Google Scholar 

  12. Echols, N. et al. Comprehensive analysis of amino acid and nucleotide composition in eukaryotic genomes, comparing genes and pseudogenes. Nucleic Acids Res. 30, 2515–2523 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Matos, M. J. et al. Chemo- and regioselective lysine modification on native proteins. J. Am. Chem. Soc. 140, 4004–4017 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu, X., Salokas, K., Weldatsadik, R. G., Gawriyski, L. & Varjosalo, M. Combined proximity labeling and affinity purification−mass spectrometry workflow for mapping and visualizing protein interaction networks. Nat. Protoc. 15, 3182–3211 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Hanai, R. & Wang, J. C. Protein footprinting by the combined use of reversible and irreversible lysine modifications. Proc. Natl Acad. Sci. USA 91, 11904–11908 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Leitner, A. A review of the role of chemical modification methods in contemporary mass spectrometry-based proteomics research. Anal. Chim. Acta 1000, 2–19 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Zhou, Y. & Vachet, R. W. Covalent labeling with isotopically encoded reagents for faster structural analysis of proteins by mass spectrometry. Anal. Chem. 85, 9664–9670 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Hitchcock-De Gregori, S. E. Study of the structure of troponin-I by measuring the relative reactivities of lysines with acetic anhydride. J. Biol. Chem. 257, 7372–7380 (1982).

    Article  CAS  PubMed  Google Scholar 

  19. Scholten, A., Visser, N. F. C., van den Heuvel, R. H. H. & Heck, A. J. R. Analysis of protein-protein interaction surfaces using a combination of efficient lysine acetylation and nanoLC-MALDI-MS/MS applied to the E9:Im9 bacteriotoxin–immunity protein complex. J. Am. Soc. Mass Spectrom. 17, 983–994 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Liu, Z. et al. Reductive methylation labeling, from quantitative to structural proteomics. Trends Anal. Chem. 118, 771–778 (2019).

    Article  CAS  Google Scholar 

  21. Boersema, P. J., Raijmakers, R., Lemeer, S., Mohammed, S. & Heck, A. J. R. Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat. Protoc. 4, 484–494 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Zhou, Y. et al. Probing the lysine proximal microenvironments within membrane protein complexes by active dimethyl labeling and mass spectrometry. Anal. Chem. 88, 12060–12065 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Chen, J. et al. Quantitative lysine reactivity profiling reveals conformational inhibition dynamics and potency of Aurora A kinase inhibitors. Anal. Chem. 91, 13222–13229 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Chen, T.-R. et al. Biflavones from Ginkgo biloba as inhibitors of human thrombin. Bioorg. Chem. 92, 103199 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Zhou, Y. et al. Prediction of ligand modulation patterns on membrane receptors via lysine reactivity profiling. Chem. Comm. 55, 4311–4314 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Liu, Z. et al. Probing conformational hotspots for the recognition and intervention of protein complexes by lysine reactivity profiling. Chem. Sci. 12, 1451–1457 (2021).

    Article  CAS  Google Scholar 

  27. Zhang, W. et al. Elucidating the molecular mechanisms of perfluorooctanoic acid-serum protein interactions by structural mass spectrometry. Chemosphere 291, 132945 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Ma, R. et al. Emerging investigator series: long-term exposure of amorphous silica nanoparticles disrupts the lysosomal and cholesterol homeostasis in macrophages. Environ. Sci. Nano 9, 105–117 (2022).

    Article  CAS  Google Scholar 

  29. Cao, J. et al. Coronas of micro/nano plastics: a key determinant in their risk assessments. Part. Fibre Toxicol. 19, 55 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yang, S. et al. Lysine reactivity profiling reveals molecular insights into human serum albumin–small-molecule drug interactions. Anal. Bioanal. Chem. 413, 7431–7440 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Wang, L. et al. Revealing the binding structure of the protein corona on gold nanorods using synchrotron radiation-based techniques: understanding the reduced damage in cell membranes. J. Am. Chem. Soc. 135, 17359–17368 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Lai, Z. W., Yan, Y., Caruso, F. & Nice, E. C. Emerging techniques in proteomics for probing nano–bio interactions. ACS Nano 6, 10438–10448 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Baimanov, D., Cai, R. & Chen, C. Understanding the chemical nature of nanoparticle–protein interactions. Bioconjug. Chem. 30, 1923–1937 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Cedervall, T. et al. Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew. Chem. Int. Ed. Engl. 46, 5754–5756 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Cai, R. et al. Dynamic intracellular exchange of nanomaterials’ protein corona perturbs proteostasis and remodels cell metabolism. Proc. Natl Acad. Sci. USA 119, e2200363119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Key R&D Program of China (2022YFC3400502), the National Natural Science Foundation of China (32088101, 22288201, 92253304 and 22204165) and grants from DICP (DICPI202242). The authors acknowledge the technological support of the biological mass spectrometry station of the Dalian Coherent Light Source.

Author information

Authors and Affiliations

Authors

Contributions

Z.L., S.Y., L.Z. and F.W. developed the protocol and wrote the manuscript. M.H. and Y.B. optimized the protocol. S.Z. contributed to the manuscript modification.

Corresponding author

Correspondence to Fangjun Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Junfeng Ma and the other, anonymous, reviewer(s) for their contribution.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

He, M. et al. J. Energy Chem. 70, 437–443 (2022): https://doi.org/10.1016/j.jechem.2022.03.002

Shang, X. et al. Nat. Catal. 4, 607–614 (2021): https://doi.org/10.1038/s41929-021-00654-6

Zhang, G. et al. Nat. Nanotechnol. 17, 993–1003 (2022): https://doi.org/10.1038/s41565-022-01177-2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Yang, S., Zhou, L. et al. Structural characterization of protein-material interfacial interactions using lysine reactivity profiling-mass spectrometry. Nat Protoc 18, 2600–2623 (2023). https://doi.org/10.1038/s41596-023-00849-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00849-0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing