Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Click chemistry: a transformative technology in nuclear medicine

Abstract

The 2022 Nobel Prize in Chemistry was awarded to Professors K. Barry Sharpless, Morten Meldal and Carolyn Bertozzi for their pioneering roles in the advent of click chemistry. Sharpless and Meldal worked to develop the canonical click reaction—the copper-catalyzed azide–alkyne cycloaddition—while Bertozzi opened new frontiers with the creation of the bioorthogonal strain-promoted azide–alkyne cycloaddition. These two reactions have revolutionized chemical and biological science by facilitating selective, high yielding, rapid and clean ligations and by providing unprecedented ways to manipulate living systems. Click chemistry has affected every aspect of chemistry and chemical biology, but few disciplines have been impacted as much as radiopharmaceutical chemistry. The importance of speed and selectivity in radiochemistry make it an almost tailor-made application of click chemistry. In this Perspective, we discuss the ways in which the copper-catalyzed azide–alkyne cycloaddition, the strain-promoted azide–alkyne cycloaddition and a handful of ‘next-generation’ click reactions have transformed radiopharmaceutical chemistry, both as tools for more efficient radiosyntheses and as linchpins of technologies that have the potential to improve nuclear medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Assembling radiopharmaceuticals with click ligations.
Fig. 2: Leveraging the CuAAC ligation for radiochemistry.
Fig. 3: The click-based tracer [68Ga]Ga-Trivehexin.
Fig. 4: Examples of radiopharmaceuticals synthesized using the SPAAC ligation.
Fig. 5: Four approaches that harness the SPAAC ligation for the site-specific bioconjugation of antibodies.
Fig. 6: Examples of the use of ‘next-generation’ click reactions in radiochemistry.
Fig. 7: The IEDDA ligation in radiochemistry.
Fig. 8: In vivo pretargeting based on the IEDDA reaction.

Similar content being viewed by others

References

  1. Nevelius, E. The Nobel Prize in Chemistry 2022; https://www.nobelprize.org/prizes/chemistry/2022/press-release/ (2023)

  2. Meldal, M. & Tornoe, C. W. Cu-catalyzed azide-alkyne cycloaddition. Chem. Rev. 108, 2952–3015 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Huisgen, R. Centenary lecture—1,3-dipolar cycloadditions. Proc. Chem. Soc., 357–396, (1961).

  4. Jewett, J. C. & Bertozzi, C. R. Cu-free click cycloaddition reactions in chemical biology. Chem. Soc. Rev. 39, 1272–1279 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Devaraj, N. K. The future of bioorthogonal chemistry. ACS Cent. Sci. 4, 952–959 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Blackman, M. L., Royzen, M. & Fox, J. M. Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. J. Am. Chem. Soc. 130, 13518–13519 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zeglis, B. M. & Lewis, J. S. Click here for better chemistry. N. Engl. J. Med. https://doi.org/10.1056/NEJMcibr2213596 (2022).

  8. Meyer, J. P., Adumeau, P., Lewis, J. S. & Zeglis, B. M. Click chemistry and radiochemistry: the first 10 years. Bioconjug. Chem. 27, 2791–2807 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zeng, D., Zeglis, B. M., Lewis, J. S. & Anderson, C. J. The growing impact of bioorthogonal click chemistry on the development of radiopharmaceuticals. J. Nucl. Med. 54, 829–832 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Wangler, C., Schirrmacher, R., Bartenstein, P. & Wangler, B. Click-chemistry reactions in radiopharmaceutical chemistry: fast & easy introduction of radiolabels into biomolecules for in vivo imaging. Curr. Med. Chem. 17, 1092–1116 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Mamat, C., Ramenda, T. & Wuest, F. Recent applications of click chemistry for the synthesis of radiotracers for molecular imaging. Mini Rev. Org. Chem. 6, 21–34 (2009).

    Article  CAS  Google Scholar 

  12. Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).

    Article  CAS  Google Scholar 

  13. Marik, J. & Sutcliffe, J. L. Click for PET: rapid preparation of [18F]fluoropeptides using CuI catalyzed 1,3-dipolar cycloaddition. Tetrahedron Lett. 47, 6681–6684 (2006).

    Article  CAS  Google Scholar 

  14. Glaser, M. & Arstad, E. “Click labeling” with 2-[18F]fluoroethylazide for positron emission tomography. Bioconjug. Chem. 18, 989–993 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Wang, Y., Weng, J., Lin, J., Ye, D. & Zhang, Y. NIR scaffold bearing three handles for biocompatible sequential click installation of multiple functional arms. J. Am. Chem. Soc. 142, 2787–2794 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Pisaneschi, F. et al. Automated, resin-based method to enhance the specific activity of fluorine-18 clicked PET radiotracers. Bioconjug. Chem. 28, 583–589 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kluba, C. A. & Mindt, T. L. Click-to-chelate: development of technetium and rhenium-tricarbonyl labeled radiopharmaceuticals. Molecules 18, 3206–3226 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yan, R. et al. A one-pot three-component radiochemical reaction for rapid assembly of 125I-labeled molecular probes. J. Am. Chem. Soc. 135, 703–709 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Denk, C. et al. Multifunctional clickable reagents for rapid bioorthogonal astatination and radio-crosslinking. ChemPlusChem 84, 774 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Doss, M. et al. Biodistribution and radiation dosimetry of the integrin marker 18F-RGD-K5 determined from whole-body PET/CT in monkeys and humans. J. Nucl. Med. 53, 787–795 (2012).

    Article  PubMed  Google Scholar 

  21. Dubash, S. R. et al. Clinical translation of a click-labeled 18F-octreotate radioligand for imaging neuroendocrine tumors. J. Nucl. Med. 57, 1207–1213 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Quigley, N. G. et al. PET/CT imaging of head-and-neck and pancreatic cancer in humans by targeting the “Cancer Integrin” alphavbeta6 with Ga-68-Trivehexin. Eur. J. Nucl. Med. Mol. Imaging 49, 1136–1147 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Agard, N. J., Prescher, J. A. & Bertozzi, C. R. A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 126, 15046–15047 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Campbell-Verduyn, L. S. et al. Strain-promoted copper-free “click” chemistry for 18F radiolabeling of bombesin. Angew. Chem. Int. Ed. 50, 11117–11120 (2011).

    Article  CAS  Google Scholar 

  25. Zeng, D. et al. 64Cu core-labeled nanoparticles with high specific activity via metal-free click chemistry. ACS Nano 6, 5209–5219 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cai, Z. et al. 64Cu-labeled somatostatin analogues conjugated with cross-bridged phosphonate-based chelators via strain-promoted click chemistry for PET imaging: in silico through in vivo studies. J. Med. Chem. 57, 6019–6029 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Agarwal, P. & Bertozzi, C. R. Site-specific antibody–drug conjugates: the nexus of bioorthogonal chemistry, protein engineering, and drug development. Bioconjug. Chem. 26, 176–192 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Wu, Y. et al. Synthesis of site-specific radiolabeled antibodies for radioimmunotherapy via genetic code expansion. Bioconjug. Chem. 27, 2460–2468 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Ahn, S. H. et al. Site-specific 89Zr- and 111In-radiolabeling and in vivo evaluation of glycan-free antibodies by azide-alkyne cycloaddition with a non-natural amino acid. Bioconjug. Chem. 31, 1177–1187 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Vivier, D. et al. The influence of glycans-specific bioconjugation on the Fcgamma RI binding and in vivo performance of 89Zr-DFO-pertuzumab. Theranostics 10, 1746–1757 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sarrett, S. M. et al. Lysine-directed site-selective bioconjugation for the creation of radioimmunoconjugates. Bioconjug. Chem. 33, 1750–1760 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Mamat, C., Gott, M. & Steinbach, J. Recent progress using the Staudinger ligation for radiolabeling applications. J. Label. Comp. Radiopharm. 61, 165–178 (2018).

    Article  CAS  Google Scholar 

  33. Narayanam, M. K. et al. Positron emission tomography tracer design of targeted synthetic peptides via 18F-sydnone alkyne cycloaddition. Bioconjug. Chem. 32, 2073–2082 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Steinkopf, W. Über aromatische sulfofluoride. J. Prakt. Chem. 117, 1–82 (1927).

    Article  CAS  Google Scholar 

  35. Zheng, Q. et al. Sulfur [18F]fluoride exchange click chemistry enabled ultrafast late-stage radiosynthesis. J. Am. Chem. Soc. 143, 3753–3763 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nakamoto, Y. et al. Expanding the applicability of the metal labeling of biomolecules by the RIKEN click reaction: a case study with gallium-68 positron emission tomography. ChemBioChem 19, 2055–2060 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Zeglis, B. M. et al. Modular strategy for the construction of radiometalated antibodies for positron emission tomography based on inverse electron demand Diels–Alder click chemistry. Bioconjug. Chem. 22, 2048–2059 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, Z. et al. Tetrazine-trans-cyclooctene ligation for the rapid construction of 18F labeled probes. Chem. Commun. 46, 8043–8045 (2010).

    Article  CAS  Google Scholar 

  39. Rashidian, M. et al. The use of 18F-2-fluorodeoxyglucose (FDG) to label antibody fragments for immuno-PET of pancreatic cancer. ACS Cent. Sci. 1, 142–147 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Patra, M., Zarschler, K., Pietzsch, H. J., Stephan, H. & Gasser, G. New insights into the pretargeting approach to image and treat tumours. Chem. Soc. Rev. 45, 6415–6431 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Rossin, R. et al. In vivo chemistry for pretargeted tumor imaging in live mice. Angew. Chem. Int. Ed. 49, 3375–3378 (2010).

    Article  CAS  Google Scholar 

  42. Edem, P. E. et al. Evaluation of a 68Ga-labeled DOTA-tetrazine as a PEt alternative to 111In-SPECT pretargeted imaging. Molecules https://doi.org/10.3390/molecules25030463 (2020).

  43. Meyer, J. P. et al. 18F-based pretargeted PET imaging based on bioorthogonal Diels–Alder click chemistry. Bioconjug. Chem. 27, 298–301 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Cook, B. E. et al. Pretargeted PET imaging using a site-specifically labeled immunoconjugate. Bioconjug. Chem. 27, 1789–1795 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Poty, S. et al. Leveraging bioorthogonal click chemistry to improve 225Ac-radioimmunotherapy of pancreatic ductal adenocarcinoma. Clin. Cancer Res. 25, 868–880 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Keinanen, O. et al. Harnessing 64Cu/67Cu for a theranostic approach to pretargeted radioimmunotherapy. Proc. Natl Acad. Sci. USA 117, 28316–28327 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Maitz, C. A. et al. Pretargeted PET of osteodestructive lesions in dogs. Mol. Pharm. 19, 3153–3162 (2022).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Institutes of Health (NIH) (R35CA232130 to J.S.L.; R01CA204167 and U01CA221046 to J.S.L. and B.M.Z.; R01CA240963 and R01CA244327 to B.M.Z.) and the Tow Foundation (D.B.) for their generous support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jason S. Lewis or Brian M. Zeglis.

Ethics declarations

Competing interests

B.M.Z. and J.S.L. hold intellectual property related to the application of click chemistry to radiopharmaceutical chemistry. D.B. and S.M.S. declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Federica Pisaneschi and Adam Shuhendler for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauer, D., Sarrett, S.M., Lewis, J.S. et al. Click chemistry: a transformative technology in nuclear medicine. Nat Protoc 18, 1659–1668 (2023). https://doi.org/10.1038/s41596-023-00825-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00825-8

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing